8 research outputs found

    Magnetic fields and currents for two current-carrying parallel coplanar superconducting strips in a perpendicular magnetic field

    Get PDF
    Abstract We present general solutions for the Meissner-state magnetic-field and current-density distributions for a pair of parallel, coplanar superconducting strips carrying arbitrary but subcritical currents in a perpendicular magnetic field. From these solutions we calculate (a) the inductance per unit length when the strips carry equal and opposite currents, (b) flux focusing in an applied field-how much flux per unit length is focused into the slot between the two strips when each strip carries no net current, (c) the current distribution for the zero-flux quantum state when the strips are connected with superconducting links at the ends and (d) the current and field distributions around both strips when only one of the strips carries a net current. The solutions are closely related to those found recently for the magnetic-field and current-density distributions in a thin, bulk-pinning-free, type-II superconducting strip with a geometrical barrier when the strip carries a current in a perpendicular applied field

    Self-field effects upon the critical current density of flat superconducting strips

    Full text link
    We develop a general theory to account self-consistently for self-field effects upon the average transport critical current density Jc of a flat type-II superconducting strip in the mixed state when the bulk pinning is characterized by a field-dependent depinning critical current density Jp(B), where B is the local magnetic flux density. We first consider the possibility of both bulk and edge-pinning contributions but conclude that bulk pinning dominates over geometrical edge-barrier effects in state-of-the-art YBCO films and prototype second-generation coated conductors. We apply our theory using the Kim model, JpK(B) = JpK(0)/(1+|B|/B0), as an example. We calculate Jc(Ba) as a function of a perpendicular applied magnetic induction Ba and show how Jc(Ba) is related to JpK(B). We find that Jc(Ba) is very nearly equal to JpK(Ba) when Ba > Ba*, where Ba* is the value of Ba that makes the net flux density zero at the strip's edge. However, Jc(Ba) is suppressed relative to JpK(Ba) at low fields when Ba < Ba*, with the largest suppression occurring when Ba*/B0 is of order unity or larger.Comment: 9 pages, 4 figures, minor revisions to add four reference

    Magnetic-field and current-density distributions in thin-film superconducting rings and disks

    Full text link
    We show how to calculate the magnetic-field and sheet-current distributions for a thin-film superconducting annular ring (inner radius a, outer radius b, and thickness d<<a) when either the penetration depth obeys lambda < d/2 or, if lambda > d/2, the two-dimensional screening length obeys Lambda = 2 lambda^2/d << a for the following cases: (a) magnetic flux trapped in the hole in the absence of an applied magnetic field, (b) zero magnetic flux in the hole when the ring is subjected to an applied magnetic field, and (c) focusing of magnetic flux into the hole when a magnetic field is applied but no net current flows around the ring. We use a similar method to calculate the magnetic-field and sheet-current distributions and magnetization loops for a thin, bulk-pinning-free superconducting disk (radius b) containing a dome of magnetic flux of radius a when flux entry is impeded by a geometrical barrier.Comment: 10 pages, 13 figure

    Magnetic-field dependence of the critical currents in a periodic coplanar array of narrow superconducting strip

    Full text link
    We calculate the magnetic-field dependence of the critical current due to both geometrical edge barriers and bulk pinning in a periodic coplanar array of narrow superconducting strips. We find that in zero or low applied magnetic fields the critical current can be considerably enhanced by the edge barriers, but in modest applied magnetic fields the critical current reduces to that due to bulk pinning alone.Comment: 23 pages, 7 figure

    Hysteretic characteristics of a double stripline in the critical state

    Full text link
    Analytical investigations of the critical state are carried out for a superconducting stripline consisting of two individual coplanar strips with an arbitrary distance between them. Two different cases are considered: a stripline with transport current and strips exposed to a perpendicular magnetic field. In the second case, the obtained solutions correspond to "fieldlike" (for unclosed strips) and "currentlike" (for a long rectangular superconducting loop) states in an isolated strip to which both a transport current and a magnetic field are applied with constant ratio.Comment: 8 pages, 6 figures. accepted by SS
    corecore