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Abstract
We present general solutions for the Meissner-state magnetic-field and
current-density distributions for a pair of parallel, coplanar superconducting
strips carrying arbitrary but subcritical currents in a perpendicular magnetic
field. From these solutions we calculate (a) the inductance per unit length
when the strips carry equal and opposite currents, (b) flux focusing in an
applied field—how much flux per unit length is focused into the slot
between the two strips when each strip carries no net current, (c) the current
distribution for the zero-flux quantum state when the strips are connected
with superconducting links at the ends and (d) the current and field
distributions around both strips when only one of the strips carries a net
current. The solutions are closely related to those found recently for the
magnetic-field and current-density distributions in a thin, bulk-pinning-free,
type-II superconducting strip with a geometrical barrier when the strip
carries a current in a perpendicular applied field.

1. Introduction

Calculations of the magnetic-field and current-density
distributions are of importance in the design of
superconducting thin-film devices such as superconducting
quantum interference devices (SQUIDs) and passive
microwave devices. When superconducting strips in the
vortex-free Meissner state carry applied or induced electrical
currents, the current density is not uniform across the width of
the strip. Because of the strong demagnetizing effects of the
strip geometry, the current density is usually higher at the strip
edges than in the middle.

In this paper, we present solutions for the distributions
of magnetic field and current density for a pair of parallel,
coplanar superconducting strips in the Meissner state when the

strips carry arbitrary but subcritical currents in the presence
of an applied magnetic field. In section 2, we consider the
simplest case, that for which the strips are of equal width
(figure 1(a)). General solutions can be obtained by linear
superposition of solutions for three separate cases. The first
of these, case A, describes the behaviour in a perpendicular
applied field when the magnetic flux passes up through the
slot between the strips and the current density in the strips
flows only in the clockwise direction when viewed from above.
These solutions are closely related to those found recently
for the magnetic-field and current-density distributions in a
thin, bulk-pinning-free, type-II superconducting strip (width
2W ) with a geometrical barrier in a perpendicular applied
field [1–4]. In the latter case, no current flows in a vortex-
filled region of width 2b straddling the centreline, and high
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Figure 1. (a) Sketch of geometry considered in section 2: two
parallel coplanar superconducting strips of equal width (W − b),
separated by a slot of width 2b, lie in the xz plane. (b) Sketch of
geometry considered in section 3: two parallel coplanar
superconducting strips of unequal width (W − b) and (a + W),
where a < b, separated by a slot of width (b −a), lie in the xz plane.

currents flow in vortex-free regions between the edges and
the vortex-filled region. The zero-current vortex-filled region
corresponds to the slot between the superconducting strips,
and the high-current vortex-free regions correspond to the two
superconducting strips in the Meissner state considered here.

The second solution, case B, describes the dipole-like
behaviour when equal and opposite currents flow in the two
strips. The magnetic flux is trapped in the slot between the
strips, and the associated current density in the strips flows
only in the anticlockwise direction when viewed from above.
We calculate the inductance per unit length, which corresponds
to that of a coplanar ac transmission line.

The third solution, case C, describes the behaviour when
equal currents flow in the same direction in both strips.

By linear superposition of the solutions for cases A, B and
C, one may obtain analytic solutions for the magnetic-field and
current-density distributions for arbitrary values of the applied
magnetic field and arbitrary and possibly unequal currents in
the two strips. We confine our attention to currents less than
the critical current, such that the strips remain in the Meissner
state. We consider the following three cases, which are the
ones most likely to be encountered experimentally.

Case D deals with flux focusing when neither strip carries
a net current. Solutions obtained by combining cases A and B
tell us how much magnetic flux is focused into the slot between
the strips. This is analogous to the flux-focusing effect in a
washer-type SQUID [5].

Case E deals with the zero-flux quantum state, produced
when the two strips are connected at the ends with
superconducting links and a perpendicular magnetic field is
applied. Solutions obtained by combining A and B describe
the induced fields and currents when the net magnetic flux
through the slot is zero. The magnetic flux density within the
slot is not zero, but its integral vanishes. We calculate
the screening efficiency, which we define as the ratio of
the magnetic moment of the two strips in the zero-flux quantum

state to the magnetic moment of a single strip of width 2W in
the Meissner state.

Case F deals with a current-carrying line and a zero-net-
current spectator line. By combining the solutions for cases
B and C, a solution can be found for the magnetic-field and
current-density distributions when one of the strips carries a
net current but the other strip carries screening currents but no
net current.

In section 3, we consider the more difficult case for
which the two superconducting strips are of unequal width
(figure 1(b)). Again we can obtain general solutions for
arbitrary applied magnetic fields and arbitrary currents in the
two strips by superposition of three independent solutions,
which we label as cases A′, B′ and C′. We confine our
attention to fields and currents less than their critical values,
such that the strips remain in the Meissner state. Case A′

describes the behaviour in a perpendicular applied magnetic
field when magnetic flux passes up through the slot between
the strips and the current density in the strips flows only in the
clockwise direction when viewed from above. However, when
the two strips are of unequal width, this occurs together with
a net transport current along the strips. The solutions for case
A′ are similar to those found recently for the magnetic-field
and current-density distributions in a thin, bulk-pinning-free,
type-II superconducting strip (width 2W ) with a geometrical
barrier when the strip carries a net current in a perpendicular
applied field [6]. In the latter case, no current flows in
a central vortex-filled region of width b − a, and high
currents flow in vortex-free regions of width W − b and
a + W at the right and left edges of the strip, respectively.
The zero-current vortex-filled region corresponds to the slot
between the superconducting strips, and the high-current
vortex-free regions correspond to the superconducting strips in
the Meissner state. Case B′, a dipole-like solution, describes
the case when equal and opposite currents flow in the two
strips of unequal width, and case C′ describes the case when
currents flow in the same direction in both strips.

The solutions for case D′, flux focusing in the presence
of an applied field but with no net current flowing in either
strip, are obtained by combining the solutions for cases A′,
B′ and C′. The solutions for case E′, the zero-flux quantum
state produced when the ends of the strips are connected with
superconducting links and a magnetic field is applied, are also
obtained by combining the solutions for cases A′, B′ and C′.
We calculate the screening efficiency, defined as the ratio of the
magnetic moment of the two strips in the zero-flux quantum
state to the magnetic moment of a single strip of width 2W

in the Meissner state. The solutions for case F′, for which
only one of the strips carries a net current, are obtained by
combining the results for cases B′ and C′.

In section 4, we summarize our results.

2. Two strips of equal width

Consider two thin coplanar superconducting strips of equal
width in the xz plane in the region −W < x < W

(figure 1(a)). They are separated by a slot of width 2b (b < W)

in the region −b < x < b, such that each strip is of width
W −b. We assume that the strip thickness d obeys d � W −b

but also that if d < λ, where λ is the superconducting
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penetration depth, then � � W − b, where � = 2λ2/d

is the 2D screening length [7]. Under such assumptions,
magnetic-field penetration into the superconducting strips
makes only a negligible perturbation of the magnetic-field
distribution calculated from Maxwell’s equations using the
boundary condition on the strips’ surfaces that the normal
component of the magnetic flux density vanishes.

When the strips carry current and are subjected to an
applied magnetic field, the resulting magnetic field H is two
dimensional; i.e., it is expressible as H(x, y) = x̂Hx(x, y) +
ŷHy(x, y). Such fields are conveniently described using
analytic functions H̃ (ζ ) ≡ Hy(x, y) + iHx(x, y) of the
complex variable ζ ≡ x + iy [3, 8, 9]. Since such
analytic functions satisfy the Cauchy–Riemann conditions,
they automatically guarantee that both the divergence and the
curl of H vanish.

2.1. Case A—geometrical-barrier-like

The first solutions of interest, which we call case A, describe
the behaviour in a perpendicular applied field Ha = ŷHa

when some magnetic flux passes up through the slot shown in
figure 1(a) and the current density in the strips flows only in
the clockwise direction when viewed from above:

H̃ A(ζ ) = Ha

(ζ 2 − b2)1/2

(ζ 2 − W 2)1/2
. (1)

Recalling that ζ = x + iy, we may evaluate the real and
the imaginary parts of H̃A using the general relations that
(ζ − a)1/2 = (x − a)1/2 when x > a and y = 0, and that
(ζ − a)1/2 = i(a − x)1/2 when x < a and y = ε, where ε is
positive infinitesimal. The y component of the magnetic field
in the plane of the strip is

HAy(x, 0)

= Ha

|x2 − b2|1/2

|x2 − W 2|1/2
, |x| < b or |x| > W, (2a)

= 0, otherwise, (2b)

and the x component evaluated at y = ε is

HAx(x, ε) = −Ha

x

|x|
(x2 − b2)1/2

(W 2 − x2)1/2
,

b < |x| < W, (3a)

= 0, otherwise. (3b)

Application of Ampere’s law and the symmetry that
HAx(x, ε) = −HAx(x,−ε) yields the current density
averaged over the strip thickness, which has only a z

component,

JAz(x) = 2Ha

d

x

|x|
(x2 − b2)1/2

(W 2 − x2)1/2
, b < |x| < W, (4a)

= 0, otherwise. (4b)

Either by performing a multipole expansion of the Biot–Savart
law and using equation (1) or by evaluating the integral, one
may show that the dipole moment per unit length [10] in the y

direction is

m′
Ay = −d

∫ W

−W

JAz(x)x dx = −πHa(W
2 − b2). (5)
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Figure 2. Plots of HAy(x, 0)/Ha (solid) and HAx(x, −ε)/Ha =
JAz(x)/(2Ha/d) (dashed) versus x/W for the equal-strip-width
geometrical-barrier-like case A and b = 0.5W .

Figure 2 shows plots of HAy(x, 0) (solid) and HAx(x,−ε) or
JAz(x) (dashed) for b = 0.5W .

Equations (2a) and (2b) show that the magnetic field has
a dome-like distribution within the slot, and equation (4a)
indicates that the current flows in the clockwise direction when
viewed from above. As discussed in section 1, these results
correspond to geometrical-barrier solutions found earlier for
initial magnetic-flux penetration into a single bulk-pinning-
free superconducting strip [1–4].

The magnetic flux per unit length up through the slot �′
Ay

can be evaluated using equations (2a), (86), (96) and (97) (see
the appendix):

�′
Ay = µ0

∫ b

−b

HAy(x, 0) dx

= 2µ0HaW [E(k) − k′2K(k)], (6)

where K(k) and E(k) are complete elliptic integrals of the first
and second kind of modulus k = b/W and complementary
modulus k′ = √

1 − k2. Similarly, the currents IAR and IAL

flowing along the z direction in the right (b < x < W)

and left (−W < x < −b) strips may be evaluated using
equations (4a), (82), (90), (94) and (95):

IAR = d

∫ W

b

JAz(x) dx = 2HaW [E(k′) − k2K(k′)], (7)

IAL = d

∫ −b

−W

JAz(x) dx = −IAR, (8)

such that the net current is IA = IAR + IAL = 0.

2.2. Case B—dipole

The second solutions of interest describe the behaviour in the
absence of an applied field when some magnetic flux is trapped
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in the slot and a dipole-like current distribution in the strips
flows only in the anticlockwise direction when viewed from
above:

H̃ B(ζ ) = −H0
W 2

[(ζ 2 − b2)(ζ 2 − W 2)]1/2
. (9)

Evaluating the real and the imaginary parts of H̃ B as we did
for case A, we find that the y component of the magnetic field
in the plane of the strip is

HBy(x, 0)

= −H0
W 2

[(x2 − b2)(x2 − W 2)]1/2
, |x| > W, (10a)

= 0, b < |x| < W, (10b)

= H0
W 2

[(b2 − x2)(W 2 − x2)]1/2
, |x| < b, (10c)

and the x component evaluated at y = ε is

HBx(x, ε) = H0
x

|x|
W 2

[(x2 − b2)(W 2 − x2)]1/2
,

b < |x| < W, (11a)

= 0, otherwise. (11b)

The corresponding current density, which has only a z

component, is

JBz(x) = −2H0

d

x

|x|
W 2

[(x2 − b2)(W 2 − x2)]1/2
,

b < |x| < W, (12a)

= 0, otherwise. (12b)

By performing a multipole expansion of the Biot–Savart law
and using equation (9), one may show that the dipole moment
per unit length [10] in the y direction is

m′
By = −d

∫ W

−W

JBz(x)x dx = 2πH0W
2. (13)

This result also can be obtained by evaluating the integral with
the help of equations (12a), (80), (88) and (99). Figure 3
shows plots of HBy(x, 0) (solid) and HBx(x,−ε) or JBz(x)

(dashed) for b = 0.5W .
The magnetic flux per unit length up through the

slot �′
By can be evaluated using equations (10c), (83)

and (96):

�′
By = µ0

∫ b

−b

HBy(x, 0) dx = 2µ0H0WK(k), (14)

where k = b/W and k′ = √
1 − k2. The currents IBR and

IBL flowing along the z direction in the right (b < x < W)

and left (−W < x < −b) strips may be evaluated using
equations (12a), (79), (87) and (94):

IBR = d

∫ W

b

JBz(x) dx = −2H0WK(k′) (15)

and

IBL = d

∫ −b

−W

JBz(x) dx = −IBR. (16)
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Figure 3. Plots of HBy(x, 0)/H0 (solid) and HBx(x,−ε)/H0 =
JBz(x)/(2H0/d) (dashed) versus x/W for the equal-strip-width
dipole case B and b = 0.5W .
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Figure 4. L′
B/µ0, where L′

B (equation (17)) is the inductance per
unit length for the equal-strip-width case B, versus k = b/W (solid
curve); and the screening efficiency η (equation (32)) for the
zero-flux quantum case E versus k = b/W (dashed).

The inductance per unit length is, therefore,

L′
B = �′

By/IBL = µ0K(k)/K(k′), (17)

as found in [11]. This result is the same as that for normal-
metal coplanar strips at sufficiently high frequencies that the
skin depth is small in comparison with the sample dimensions
[12]. The solid curve in figure 4 shows L′

B as a function of
k = b/W . Note that L′

B diverges logarithmically as b → W .
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2.3. Case C—parallel currents

The third solutions of interest describe the behaviour in the
absence of an applied field when parallel currents flow in the
strips:

H̃ C(ζ ) = It

2π

ζ

[(ζ 2 − b2)(ζ 2 − W 2)]1/2
, (18)

where It is the total current flowing in the z direction.
Evaluating the real and the imaginary parts of H̃ C as we did for
the above cases, we find that the y component of the magnetic
field in the plane of the strip is

HCy(x, 0)

= It

2π

x

[(x2 − b2)(x2 − W 2)]1/2
, |x| > W, (19a)

= 0, b < |x| < W, (19b)

= − It

2π

x

[(b2 − x2)(W 2 − x2)]1/2
, |x| < b, (19c)

and the x component evaluated at y = ε is

HCx(x, ε) = − It

2π

|x|
[(x2 − b2)(W 2 − x2)]1/2

,

b < |x| < W, (20a)

= 0, otherwise. (20b)

The corresponding current density, which has only a z

component, is

JCz(x) = It

πd

|x|
[(x2 − b2)(W 2 − x2)]1/2

,

b < |x| < W, (21a)

= 0, otherwise. (21b)

Figure 5 shows plots of HCy(x, 0) (solid) and HCx(x,−ε) or
JCz(x) (dashed) for b = 0.5W .

The magnetic flux per unit length up through the slot �′
Cy ,

obtained from equation (19c), is

�′
Cy = µ0

∫ b

−b

HCy(x, 0) dx = 0, (22)

because HCy(x, 0) is an odd function of x. The currents ICR

and ICL flowing along the z direction in the right (b < x < W)

and left (−W < x < −b) strips may be evaluated using
equations (21a), (80), (88) and (99):

ICR = d

∫ W

b

JCz(x) dx = It/2 (23)

and

ICL = d

∫ −b

−W

JCz(x) dx = It/2. (24)
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Figure 5. Plots of HCy(x, 0)/(It /2πW) (solid) and
HCx(x, −ε)/(It /2πW) = JCz(x)/(It /πWd) (dashed) versus x/W
for the equal-strip-width parallel-currents case C and b = 0.5W .

2.4. Case D—flux focusing

Consider the behaviour when the two strips are subjected to
a perpendicular magnetic field Ha but neither strip carries a
net current. We wish to calculate how much magnetic flux
is focused into the slot. The solutions for case D can be
obtained from a linear superposition of the solutions for cases
A and B: H̃D(ζ ) = H̃A(ζ ) + H̃ B(ζ ), where the constant
H0 in equation (9) is determined by the condition that the
current in the right strip is zero (IDR = IAR + IBR = 0). From
equations (7) and (15) we obtain

H0D = [E(k′)/K(k′) − k2]Ha, (25)

where the subscript D labels the value of H0 for case D.
Symmetry guarantees that the current in the left strip also
is zero (IDL = IAL + IBL = 0). Figure 6 shows plots
of HDy(x, 0) (solid) and HDx(x,−ε) or JDz(x) (dashed) for
b = 0.5W .

The magnetic flux per unit length up through the slot
is �′

Dy = �′
Ay + �′

By, which we obtain from equations (6),
(14), (25) and (98). Of the magnetic flux per unit length that is
applied to the strip, 2µ0WHa , we find that the fraction focused
into the slot is

�′
Dy

2µ0WHa

= π/2

K(k′)
, (26)

where k = b/W and k′ = √
1 − k2. When k < 1, this fraction

is always less than unity, as shown by the solid curve in figure 7.
The ratio of the average magnetic field in the slot to the applied
magnetic field is

Hslot

Ha

= �′
Dy

2µ0bHa

= π/2

kK(k′)
. (27)

As b → W , both the focused-flux fraction (equation (26)) and
the slot-field ratio (equation (27)) tend to unity. However, as
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Figure 6. Plots of HDy(x, 0)/Ha (solid) and HDx(x, −ε)/Ha =
JDz(x)/(2Ha/d) (dashed) versus x/W for the equal-strip-width
flux-focusing case D and b = 0.5W .
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Figure 7. Focused-flux fraction �′
Dy/(2µ0WHa) (equation (26))

(solid) and the slot-field ratio Hslot/Ha (equation (27)) (dashed)
versus k = b/W for the equal-strip-width flux-focusing case D.

seen in figure 7, as b → 0, the focused-flux fraction (solid)
tends to zero, while the slot-field ratio (dashed) diverges.
This field enhancement in the slot may have undesired
consequences for vortex penetration into dc SQUIDs operated
in an ambient magnetic field.

Another way of describing the flux-focusing effect is in
terms of the effective area of a long slot [5]. Consider a length
Lz of the double strip, occupying area A = 2WLz, such that
the area of the slot is Aslot = 2bLz. The effective area Aeff

1 21 41 61 81
A/Aslot = W/b

0

5

10

15

20

25

A
ef

f /
A

sl
ot

Figure 8. Effective area ratio Aeff/Aslot (equation (28)) versus
A/Aslot = W/b = 1/k for the equal-strip-width flux-focusing
case D.

of the slot, i.e. the area that would intercept flux �′
DyLz in a

uniform flux density µ0Ha , is larger than Aslot by the ratio

Aeff

Aslot
= �′

DyLz/µ0Ha

2bLz

= Hslot

Ha

= π/2

kK(k′)
. (28)

This ratio is shown in figure 8 as a function of A/Aslot = W/b.
For large values of A/Aslot, Aeff/Aslot grows approximately
linearly with A/Aslot. This behaviour differs from that of a
SQUID loop in the form of a square washer (area Aw) with a
square hole (area Ah), for which Aeff/Ah ∼ (Aw/Ah)

1/2 [5].

2.5. Case E—zero-flux quantum state

Consider next the behaviour when, in the absence of a magnetic
field, the two strips are first connected via superconducting
links at their ends. A perpendicular magnetic field Ha is now
applied in the y direction, but no magnetic flux enters into
the strips. When viewed from above, a circulating current
flowing in the clockwise direction generates a magnetic field
opposing the applied field. The solutions for case E can be
obtained from a linear superposition of the solutions for cases
A and B: H̃E(ζ ) = H̃ A(ζ ) + H̃B(ζ ), where the constant H0

in equation (9) is now determined by the condition that the net
magnetic flux per unit length up through the slot must vanish;
i.e., �′

Ey = �′
Ay + �′

By = 0. From equations (6) and (14) we
obtain

H0E = −[E(k)/K(k) − k′2]Ha. (29)

The currents in the strips, obtained from IER = IAR +
IBR, IEL = IAL + IBL, equations (7), (8), (15), (16), (29)
and (98), are

IER = −IEL = πHaW/K(k). (30)

Figure 9 shows plots of HEy(x, 0) (solid) and HEx(x,−ε) or
JEz(x) (dashed) for b = 0.5W .
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Figure 9. Plots of HEy(x, 0)/Ha (solid) and HEx(x,−ε)/Ha =
JEz(x)/(2Ha/d) (dashed) versus x/W for the equal-strip-width
zero-flux quantum case E and b = 0.5W .

The magnetic moment per unit length of the strip [10]
has only a component along the y direction, which is obtained
from JEz = JAz + JBz and equations (5), (13) and (29):

m′
Ey = −d

∫ W

−W

JEZ(x)x dx

= −πHaW
2[2E(k)/K(k) − k′2]. (31)

When b = 0, where k = 0 and E(0) = K(0) = π/2, the
screening is optimum and the magnitude of m′

Ey is maximized
at m′

max = −πHaW
2, the same value as for a solid strip of

width 2W with no slot. For arbitrary values of k = b/W < 1
(recall that k′ = √

1 − k2), the screening efficiency may be
defined as

η = m′
Ey/m′

max = [2E(k)/K(k) − k′2], (32)

which is plotted as the dashed curve in figure 4. Note that η

remains close to unity for values of k up to around 0.5.

2.6. Case F—only one strip carrying net current

Finally we consider the behaviour when, in the absence of
an applied magnetic field, the left strip in figure 1(a) carries
a transport current It but the right strip is simply a passive
spectator, carrying no net current. The solutions for this case
F can be obtained from a linear superposition of the solutions
for cases B and C: H̃ F (ζ ) = H̃ B(ζ ) + H̃ C(ζ ), where the
constant H0 in equation (9) is now determined by the condition
that the net current through the right strip must vanish; i.e.,
IFR = IBR +ICR = 0. From equations (15) and (23) we obtain

H0F = It/4WK(k′). (33)

From equations (16) and (24) we find IFL = IBL + ICL = It ,

as expected, and from equations (14), (22) and (33) we obtain
the magnetic flux up through the slot, �′

Fy = �′
By + �′

Cy :

�′
Fy = µ0ItK(k)/2K(k′). (34)
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Figure 10. Plots of HFy(x, 0)/(It /2πW) (solid) and HFx(x,−ε)/
(It /2πW) = JFz(x)/(It /πWd) (dashed) versus x/W for the case F
(current-carrying strip and a zero-net-current spectator strip of equal
width) and b = 0.5W . Dot-dashed curves show the same quantities
in the absence of the right-hand strip if they differ significantly.

Figure 10 shows plots of HFy(x, 0) (solid) and HFx(x,−ε)

or JFz(x) (dashed) for b = 0.5W . The same quantities in
the absence of the right spectator strip [10, 13] are shown by
dot-dashed curves wherever there are significant differences.
For b = 0.5W , the differences near the left (current-carrying)
strip are insignificant.

3. Two strips of unequal width

We next consider two thin coplanar superconducting strips of
unequal width in the xz plane in the region −W < x < W , as
sketched in figure 1(b). The strips are of widths (W − b) and
(a + W), where −W < a < b < W , and they are separated
by a slot of width (b − a). We make the same assumptions on
the strip thickness as in section 2, and we again use analytic
functions of the complex variable ζ ≡ x + iy.

3.1. Case A′—geometrical-barrier-like

The solutions for the next case considered, which we call case
A′, describe the behaviour in a perpendicular applied field
Ha = ŷHa when some magnetic flux passes up through the
slot and the current density in the strips flows only in the
clockwise direction when viewed from above:

H̃A′(ζ ) = Ha

[(ζ − a)(ζ − b)]1/2

(ζ 2 − W 2)1/2
. (35)

Recalling that ζ = x + iy, we may evaluate the real and
the imaginary parts of H̃ A′ using the general relations that
(ζ − a)1/2 = (x − a)1/2 when x > a and y = 0, and that
(ζ − a)1/2 = i(a − x)1/2 when x < a and y = ε, where ε is
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positive infinitesimal. The y component of the magnetic field
in the plane of the strip is

HA′y(x, 0) = Ha

|(x − a)(x − b)|1/2

|x2 − W 2|1/2
,

a < x < b or |x| > W, (36a)

= 0, otherwise, (36b)

and the x component evaluated at y = ε is

HA′x(x, ε)

= − Ha

[(x − a)(x − b)]1/2

(W 2 − x2)1/2
, b < x < W, (37a)

= Ha

[(a − x)(b − x)]1/2

(W 2 − x2)1/2
, −W < x < a, (37b)

= 0, otherwise. (37c)

Application of Ampere’s law and the symmetry that
HA′x(x, ε) = −HA′x(x,−ε) yields the current density
averaged over the strip thickness, which has only a z

component,

JA′z(x)

= 2Ha

d

[(x − a)(x − b)]1/2

(W 2 − x2)1/2
, b < x < W, (38a)

= −2Ha

d

[(a − x)(b − x)]1/2

(W 2 − x2)1/2
, −W < x < a,

(38b)

= 0, otherwise. (38c)

The magnetic moment per unit length, calculated as for case
A, is

m′
A′y = −d

∫ W

−W

JA′z(x)x dx

= −πHa[W 2 − (b − a)2/4]. (39)

Equations (36a) and (36b) show that the magnetic field has
a dome-like distribution within the slot, and equations (38a)
and (38b) indicate that currents flow in the clockwise
direction when viewed from above. As discussed in
section 1, these results correspond to geometrical-barrier
solutions found earlier for magnetic-flux penetration into a
single bulk-pinning-free superconducting strip carrying a net
current in a perpendicular applied magnetic field [6].

The magnetic flux per unit length up through the slot �′
A′y

can be evaluated in terms of complete elliptic integrals using
equations (36a) and (86) (see the appendix):

�′
A′y = µ0

∫ b

a

HA′y(x, 0) dx = µ0HaI8(W, b, a,−W).

(40)

Similarly, the currents IA′R and IA′L flowing along the z

direction in the right (b < x < W) and left (−W < x < a)

strips may be evaluated using equations (38a), (38b), (82) and
(90):

IA′R = d

∫ W

b

JA′z(x) dx = 2HaI4(W, b, a,−W), (41)

IA′L = d

∫ a

−W

JA′z(x) dx = −2HaI12(W, b, a,−W). (42)

In contrast to case A for equal strip widths, where IA = 0, the
total current carried in the z direction for case A′ for unequal
strip widths, calculated from equation (35) and Ampere’s law,
is not zero in general but instead is

IA′ = IA′R + IA′L = −πHa(a + b), (43)

as found in [6]. Alternatively, this can be shown explicitly
from equations (41), (42) and (99).

3.2. Case B′—dipole

The next solutions of interest describe the behaviour in the
absence of an applied field when some magnetic flux is trapped
in the slot and a dipole-like current distribution in the strips
flows only in the anticlockwise direction when viewed from
above:

H̃ B ′(ζ ) = −H0
W 2

[(ζ − a)(ζ − b)(ζ 2 − W 2)]1/2
. (44)

Evaluating the real and the imaginary parts of H̃B ′ as we did
for case B, we find that the y component of the magnetic field
in the plane of the strip is

HB ′y(x, 0)

= − H0
W 2

|(x − a)(x − b)(x2 − W 2)|1/2
, |x| > W,

(45a)

= 0, −W < x < a or b < x < W, (45b)

= H0
W 2

[(x − a)(b − x)(W 2 − x2)]1/2
, a < x < b,

(45c)

and the x component evaluated at y = ε is

HB ′x(x, ε) = H0
W 2

[(x − a)(x − b)(W 2 − x2)]1/2
,

b < x < W, (46a)

= −H0
W 2

[(a − x)(b − x)(W 2 − x2)]1/2
,

−W < x < a, (46b)

= 0, otherwise. (46c)

The corresponding current density, which has only a z

component, is

JB ′z(x) = −2H0

d

W 2

[(x − a)(x − b)(W 2 − x2)]1/2
,

b < x < W, (47a)

= 2H0

d

W 2

[(a − x)(b − x)(W 2 − x2)]1/2
,

−W < x < a, (47b)

= 0, otherwise. (47c)
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By performing a multipole expansion of the Biot–Savart law
and using equation (44), one may show that the dipole moment
per unit length in the y direction is

m′
B ′y = −d

∫ W

−W

JB ′z(x)x dx = 2πH0W
2. (48)

This result also can be obtained by evaluating the integral in
equation (48) with the help of equations (47a), (47b), (80),
(88) and (99).

The magnetic flux per unit length up through the slot �′
B ′y

can be evaluated using equations (45c) and (83):

�′
B ′y = µ0

∫ b

a

HB ′y(x, 0) dx = µ0H0W
2I5(W, b, a,−W).

(49)

The currents IB ′R and IB ′L flowing along the z direction in the
right (b < x < W) and left (−W < x < a) strips may be
evaluated using equations (47a), (47b), (79) and (87):

IB ′R = d

∫ W

b

JB ′z(x) dx = −2H0W
2I1(W, b, a,−W)

(50)

and

IB ′L = d

∫ a

−W

JBz(x) dx = 2H0W
2I9(W, b, a,−W) = −IB ′R,

(51)

such that IB ′ = IB ′R + IB ′L = 0. The inductance per unit
length is, therefore,

L′
B ′ = �′

B ′y

IB ′L
= µ0I5(W, b, a,−W)

2I1(W, b, a,−W)
= µ0K(q ′)

2K(r ′)
, (52)

where

q ′ =
√

2W(b − a)

(W − a)(W + b)
=
√

1 − r ′2, (53)

r ′ =
√

(W − b)(W + a)

(W − a)(W + b)
=
√

1 − q ′2. (54)

That the above expression for L′
B ′ (equation (52)) reduces to

that for L′
B (equation (17)) when a = −b can be shown with

the help of equations (94) and (96).

3.3. Case C′—parallel currents

The next solutions of interest describe the behaviour in the
absence of an applied field when parallel currents flow in the
strips:

H̃ C′(ζ ) = It

2π

ζ

[(ζ − a)(ζ − b)(ζ 2 − W 2)]1/2
, (55)

where It is the total current flowing in the z direction.
Evaluating the real and the imaginary parts of H̃ C′ as we
did for the above cases, we find that the y component of the
magnetic field in the plane of the strip is

HC′y(x, 0) = It

2π

x

[(x − a)(x − b)(x2 − W 2)]1/2
,

|x| > W, (56a)

= 0, −W < x < a or b < x < W, (56b)

= − It

2π

x

[(x − a)(b − x)(W 2 − x2)]1/2
,

a < x < b, (56c)

and the x component evaluated at y = ε is

HC′x(x, ε) = − It

2π

x

[(x − a)(x − b)(W 2 − x2)]1/2
,

b < x < W, (57a)

= It

2π

x

[(a − x)(b − x)(W 2 − x2)]1/2
,

−W < x < a, (57b)

= 0, otherwise. (57c)

The corresponding current density, which has only a z

component, is

JC′z(x) = It

πd

x

[(x − a)(x − b)(W 2 − x2)]1/2
,

b < x < W, (58a)

= − It

πd

x

[(a − x)(b − x)(W 2 − x2)]1/2
,

−W < x < a, (58b)

= 0, otherwise. (58c)

By performing a multipole expansion of the Biot–Savart law
and using equation (55), one may show that the dipole moment
per unit length in the y direction is

m′
C′y = −d

∫ W

−W

JC′z(x)x dx = −It(a + b)/2. (59)

The magnetic flux per unit length up through the slot �′
C′y ,

obtained from equations (56c) and (84), is

�′
C′y = µ0

∫ b

a

HC′y(x, 0) dx

= −(µ0It/2π)I6(W, b, a,−W). (60)

The currents IC′R and IC′L flowing along the z direction
in the right (b < x < W) and left (−W < x < a) strips may
be evaluated using equations (58a), (58b), (80) and (88):

IC′R = d

∫ W

b

JC′z(x) dx = (It/π)I2(W, b, a,−W) (61)

and

IC′L = d

∫ a

−W

JC′z(x) dx = −(It/π)I10(W, b, a,−W).

(62)

That IC′ = IC′R + IC′L = It can be obtained from equation (55)
and Ampere’s law. Alternatively, this can be shown explicitly
from equations (61), (62) and (99).
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3.4. Case D′—flux focusing

We next consider the behaviour when two strips of unequal
width are subjected to a perpendicular magnetic field Ha but
neither strip carries a net current. We wish to calculate how
much magnetic flux is focused into the slot. The solutions
for case D′ can be obtained from a linear superposition of
the solutions for cases A′, B′ and C′: H̃D′(ζ ) = H̃ A′(ζ ) +
H̃B ′(ζ )+ H̃ C′(ζ ), where the constants H0 in equation (44) and
It in equation (55) are determined by the conditions that the net
currents in both strips are zero (ID′R = IA′R + IB ′R + IC′R = 0
and ID′L = IA′L + IB ′L + IC′L = 0). Since IB ′ = 0 and
IC′ = It , the condition that ID′ = IA′ + IB ′ + IC′ = 0 yields,
from equation (43),

ItD′ = −IA′ = πHa(a + b), (63)

where the subscript D′ labels the value of It for case D′. The
value of H0D′ , obtained from the condition that ID′R = 0, is

H0D′ = 2I4(W, b, a,−W) + (a + b)I2(W, b, a,−W)

2W 2I1(W, b, a,−W)
Ha

(64a)

= (W − a)(W + b)E(r ′) + [(W + b)a − (W − a)b]K(r ′)
2W 2K(r ′)

Ha,

(64b)

where r ′ is given in equation (54).
The magnetic flux per unit length up through the slot is

�′
D′y = �′

A′y + �′
B ′y + �′

C′y, which can be obtained from
equations (40), (49), (60), (63), (64b), (77), (78), (83), (84),
(86) and (98). Of the magnetic flux per unit length that is
applied to the strip, 2µ0WHa , the fraction focused into the
slot is

�′
D′y

2µ0WHa

= π
√

(W − a)(W + b)

4WK(r ′)
. (65)

The ratio of the average magnetic field in the slot to the applied
magnetic field is

H ′
slot

Ha

= �′
D′y

µ0(b − a)Ha

= π
√

(W − a)(W + b)

2(b − a)K(r ′)
. (66)

For a long slot of length Lz, the ratio of the effective area
A′

eff = �′
D′yLz/µ0Ha to the area of the slot A′

slot = (b − a)Lz

is A′
eff/A

′
slot = H ′

slot/Ha , which can be evaluated using
equation (66). For the equal-width case (a = −b),
equations (65) and (66) reduce to equations (26) and (27),
as can be shown with the help of equation (94).

3.5. Case E′—zero-flux quantum state

Consider next the behaviour when, in the absence of a magnetic
field, the two strips are first connected via superconducting
links at their ends. A perpendicular magnetic field Ha is
now applied in the y direction, but no magnetic flux enters
into the strips. When viewed from above, a circulating
current flowing in the clockwise direction generates a magnetic
field opposing the applied field. The solutions for case E′

can be obtained from a linear superposition of the solutions
for cases A′, B′ and C′: H̃E ′(ζ ) = H̃A′(ζ ) + H̃B ′(ζ ) +
H̃C′(ζ ), where the constants H0 in equation (44) and It in
equation (55) now are determined by the conditions that

(a) the net magnetic flux per unit length up through the
slot must vanish (�′

E ′y = �′
A′y + �′

B ′y + �′
C′y = 0) and

(b) the net current carried by the two strips must vanish
(IE ′ = IA′ + IB ′ + IC′ = 0). For the same reasons as those
leading to equation (63), we find

ItE ′ = πHa(a + b), (67)

where the subscript E′ labels the value of It for case E′. With
the help of equations (40), (49), (60), (83), (84) and (86) we
obtain the value of H0E ′ from the condition that �′

E ′y = 0:

H0E ′ = (a + b)I6(W, b, a,−W) − 2I8(W, b, a,−W)

2W 2I5(W, b, a,−W)
Ha

(68a)

= −1

2

[(
1 − a

W

)(
1 +

b

W

)
E(q ′)
K(q ′)

−
(

1 +
ab

W 2

)]
Ha,

(68b)

where q ′ is given in equation (53). That equation (68b) reduces
to equation (29) when a = −b can be shown with the help of
equations (96) and (97). The currents in the strips, obtained
from IE ′R = IA′R + IB ′R + IC′R, IE ′L = IA′L + IB ′L + IC′L and
equations (41), (42), (50), (51), (61), (62), (67), (68b), (79),
(80), (82) and (98), are

IE ′R = −IE ′L = πHa

√
(W − a)(W + b)/K(q ′). (69)

That equation (69) reduces to equation (30) when a = −b can
be shown with the help of equation (96).

The magnetic moment per unit length of the strip has only
a component along the y direction, which is obtained from
JE ′z = JA′z + JB ′z + JC′z and equations (39), (48), (59), (67)
and (68b):

m′
E ′y = −d

∫ W

−W

JE ′z(x)x dx

= −πHa[(W − a)(W + b)E(q ′)/K(q ′) + (a + b)2/4].

(70)

When a = b, where E(0) = K(0) = π/2, the screening
is optimum and the magnitude of m′

E ′y is maximized at
m′

max = −πHaW
2, the same value as for a solid strip of

width 2W with no slot. For arbitrary values of a and b the
screening efficiency may be defined as

η′ = m′
E ′y/m′

max = (1 − a/W)(1 + b/W)E(q ′)/K(q ′)

+ (a + b)2/4W 2, (71)

which has the value unity when a = b but takes on smaller
values as a decreases and b increases.

3.6. Case F′—only one strip carrying net current

Finally we consider the behaviour when, in the absence of
an applied magnetic field, the left strip in figure 1(b) carries
a transport current It but the right strip is simply a passive
spectator, carrying no net current. The solutions for case F′

can be obtained from a linear superposition of the solutions
for cases B′ and C′: H̃ F ′(ζ ) = H̃ B ′(ζ ) + H̃ C′(ζ ), where
the constant H0 in equation (44) is now determined by the
condition that the net current through the right strip must
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vanish; i.e., IF ′R = IB ′R + IC′R = 0. From equations (50)
and (61) we obtain

H0F ′ = (It /2πW 2)I2(W, b, a,−W)/I1(W, b, a,−W)

(72a)

= (It /2πW 2)

[
aK(r ′) + (b − a)Π

(
W − b

W − a
, r ′
)]/

K(r ′),

(72b)

where r ′ is given in equation (54). From equations (51) and
(62) we find that IF ′L = IB ′L + IC′L = It , as expected. That
equation (72b) reduces to equation (33) when a = −b can be
shown from equation (99).

From equations (49), (60) and (72b) we obtain the
magnetic flux up through the slot, �′

F ′y = �′
B ′y + �′

C′y :

�′
F ′y = µ0It

π
√

(W − a)(W + b)

[
(W − b)Π

(
b − a

W − a
, q ′
)

− (W − a)K(q ′)

+ (b − a)Π
(

W − b

W − a
, r ′
)

K(q ′)/K(r ′)
]

, (73)

where q ′ and r ′ are given in equations (53) and (54). That
equation (73) reduces to equation (34) when a = −b can be
shown with the help of equations (92), (94) and (96).

4. Summary

In this paper, we presented calculations of the magnetic-
field and current-density distributions in the vicinity of two
parallel coplanar superconducting strips in the Meissner state.
Such calculations assist in understanding the electrodynamic
properties of superconducting thin-film devices such as
SQUIDs and passive microwave devices. The results apply
only when both the strip thickness and the relevant penetration
depth (either the London penetration depth λ when d > λ or
the 2D screening length � = 2λ2/d when d < λ) are much
smaller than the width of either strip. The results also are
valid only if the applied fields and currents are smaller than
the critical values that would admit vortices into the strips.

Solutions for arbitrary (but subcritical) applied field and
arbitrary (but subcritical) currents in the two strips can be
obtained from linear superpositions of the solutions for three
simpler cases, which we called cases A, B and C for equal
strip widths (figures 2, 3 and 5), and A′, B′ and C′ for unequal
strip widths. Cases B and B′ yield the inductance per unit
length when the strips carry equal and opposite currents. These
solutions also describe the behaviour when magnetic flux is
trapped in the slot of a long rectangular superconducting loop.

We studied the flux-focusing effect (cases D and D′),
seen in dc SQUIDs, when the two strips are subjected to a
perpendicular magnetic field, but neither strip carries a net
current. We calculated the focused-flux fraction and the slot-
field ratio (i.e., the average field in the slot divided by the
applied field). We found that the slot-field ratio, which is a
measure of the effective area of the slot, becomes much larger
than unity as the slot width decreases to zero.

Next, we examined details of the field and current
distributions in the zero-flux quantum state (cases E and E′)

produced when the strips are connected via superconducting
links at their ends and a magnetic field is then applied.
Although the magnetic field in the slot between the two strips
is not in general zero, its integral (the magnetic flux up through
the slot) is zero.

Finally, we studied the field and current distributions
generated when only one of the strips carries a current (cases
F and F′). The other strip, a passive spectator, carries induced
screening currents and thereby affects the net field distribution.

The magnetic-field distributions for all the above cases
should be experimentally observable using recent advances
in high-resolution imaging techniques such as magneto-optics
[14, 15], scanning SQUID microscopy [16–18], scanning Hall
probe microscopy [19, 20] and Lorentz microscopy [21].
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Appendix

The currents in the right and left strips (IR and IL) and the
flux per unit length (�′

y) for all cases considered in this paper
were evaluated using the following integrals, obtained partly
with the help of [22–24]. The integrals are expressed in terms
of complete elliptic integrals of the first kind,

K(k) =
∫ π/2

0

dα√
1 − k2 sin2 α

=
∫ 1

0

dx√
(1 − x2)(1 − k2x2)

,

(74)

second kind,

E(k) =
∫ π/2

0

√
1 − k2 sin2 α dα =

∫ 1

0

√
1 − k2x2

√
1 − x2

dx

(75)

and third kind,

Π(n, k) =
∫ π/2

0

dα

(1 − n sin2 α)
√

1 − k2 sin2 α

=
∫ 1

0

dx

(1 − nx2)
√

(1 − x2)(1 − k2x2)
, (76)

where k is the modulus k′ = √
1 − k2 is the complementary

modulus and the number n is the parameter of the integral of
the third kind.

With the convention that a > b > c > d and the
definitions

q =
√

(a − d)(b − c)

(a − c)(b − d)
=
√

1 − r2, (77)
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r =
√

(a − b)(c − d)

(a − c)(b − d)
=
√

1 − q2, (78)

the integrals used in this paper are

I1(a, b, c, d) =
∫ a

b

dx√
(a − x)(x − b)(x − c)(x − d)

= 2√
(a − c)(b − d)

K(r), (79)

I2(a, b, c, d) =
∫ a

b

x dx√
(a − x)(x − b)(x − c)(x − d)

= 2√
(a − c)(b − d)

[
cK(r) + (b − c)Π

(
a − b

a − c
, r

)]
,

(80)

I3(a, b, c, d) =
∫ a

b

x2 dx√
(a − x)(x − b)(x − c)(x − d)

= 1√
(a − c)(b − d)

[
(a − c)(b − d)E(r)

− (ab − ac − bc − c2)K(r)

+ (b − c)(a + b + c + d)Π
(

a − b

a − c
, r

)]
, (81)

I4(a, b, c, d) =
∫ a

b

√
(x − b)(x − c)

(a − x)(x − d)
dx

= 1√
(a − c)(b − d)

[
(a − c)(b − d)E(r)

− (a − c)(b − c)K(r)

+ (a − b − c + d)(b − c)Π
(

a − b

a − c
, r

)]
, (82)

I5(a, b, c, d) =
∫ b

c

dx√
(a − x)(b − x)(x − c)(x − d)

= 2√
(a − c)(b − d)

K(q), (83)

I6(a, b, c, d) =
∫ b

c

x dx√
(a − x)(b − x)(x − c)(x − d)

= 2√
(a − c)(b − d)

[
aK(q) − (a − b)Π

(
b − c

a − c
, q

)]
,

(84)

I7(a, b, c, d) =
∫ b

c

x2 dx√
(a − x)(b − x)(x − c)(x − d)

= 1√
(a − c)(b − d)

[
−(a − c)(b − d)E(q)

+ (a2 + ab + ac − bc)K(q)

− (a − b)(a + b + c + d)Π
(

b − c

a − c
, q

)]
, (85)

I8(a, b, c, d) =
∫ b

c

√
(b − x)(x − c)

(a − x)(x − d)
dx

= 1√
(a − c)(b − d)

[
(a − c)(b − d)E(q)

− (a − b)(a − c)K(q)

+ (a − b)(a − b − c + d)Π
(

b − c

a − c
, q

)]
, (86)

I9(a, b, c, d) =
∫ c

d

dx√
(a − x)(b − x)(c − x)(x − d)

= 2√
(a − c)(b − d)

K(r), (87)

I10(a, b, c, d) =
∫ c

d

x dx√
(a − x)(b − x)(c − x)(x − d)

= 2√
(a − c)(b − d)

[
bK(r) − (b − c)Π

(
c − d

b − d
, r

)]
,

(88)

I11(a, b, c, d) =
∫ c

d

x2 dx√
(a − x)(b − x)(c − x)(x − d)

= 1√
(a − c)(b − d)

[
(a − c)(b − d)E(r)

+ (b2 + bc + bd − cd)K(r)

− (b − c)(a + b + c + d)Π
(

c − d

b − d
, r

)]
,

(89)

I12(a, b, c, d) =
∫ c

d

√
(b − x)(c − x)

(a − x)(x − d)
dx

= 1√
(a − c)(b − d)

[
(a − c)(b − d)E(r)

− (b − c)(b − d)K(r)

− (b − c)(a − b − c + d)Π
(

c − d

b − d
, r

)]
. (90)

We also have made use of the following identities [22]:

(a − d)Π
(

b − a

b − d
, r

)
− (b − c)Π

(
a − b

a − c
, r

)
= (c − d)K(r), (91)

(a − b)Π
(

b − c

a − c
, q

)
+ (c − d)Π

(
b − c

b − d
, q

)
= (a − d)K(q), (92)

(a − d)Π
(

d − c

a − c
, r

)
− (b − c)Π

(
c − d

b − d
, r

)
= (a − b)K(r), (93)

K
(

1 − k′

1 + k′

)
= 1 + k′

2
K(k), (94)

E
(

1 − k′

1 + k′

)
= 1

1 + k′ [E(k) + k′K(k)], (95)

K

(
2
√

k

1 + k

)
= (1 + k)K(k), (96)

E

(
2
√

k

1 + k

)
= 1

1 + k
[2E(k) − k′2K(k)], (97)

E(k)K(k′) + E(k′)K(k) − K(k)K(k′) = π/2. (98)

Equations (94)–(97) also are valid with k and k′ interchanged.
We also have made use of the following relation [25]:

Π(n, k) + Π(k2/n, k) − K(k) = π

2

√
n

(1 − n)(n − k2)
, n > 0.

(99)
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