35,121 research outputs found
Quark Mass Matrices with Four and Five Texture Zeroes, and the CKM Matrix, in terms of Mass Eigenvalues
Using the triangular matrix techniques of Kuo et al and Chiu et al for the
four and five texture zero cases, with vanishing (11) elements for U and D
matrices, it is shown, from the general eigenvalue equations and hierarchy
conditions, that the quark mass matrices, and the CKM matrix can be expressed
(except for the phases) entirely in terms of quark masses. The matrix
structures are then quite simple and transparent. We confirm their results for
the five texture zero case but find, upon closer examination of all the CKM
elements which our results provide, that six of their nine patterns for the
four texture zero case are not compatible with experiments. In total, only one
five-texture zero and three four-texture zero patterns are allowed.Comment: 15 pages, 3 table
Controlled enhancement or suppression of exchange biasing using impurity -layers
The effects of inserting impurity -layers of various elements into a
Co/IrMn exchange biased bilayer, at both the interface, and at given points
within the IrMn layer a distance from the interface, has been investigated.
Depending on the chemical species of dopant, and its position, we found that
the exchange biasing can be either strongly enhanced or suppressed. We show
that biasing is enhanced with a dusting of certain magnetic impurities, present
at either at the interface or sufficiently far away from the Co/IrMn interface.
This illustrates that the final spin structure at the Co/IrMn interface is not
only governed by interface structure/roughness but is also mediated by local
exchange or anisotropy variations within the bulk of the IrMn
Matrix Gravity and Massive Colored Gravitons
We formulate a theory of gravity with a matrix-valued complex vierbein based
on the SL(2N,C)xSL(2N,C) gauge symmetry. The theory is metric independent, and
before symmetry breaking all fields are massless. The symmetry is broken
spontaneously and all gravitons corresponding to the broken generators acquire
masses. If the symmetry is broken to SL(2,C) then the spectrum would correspond
to one massless graviton coupled to massive gravitons. A novel
feature is the way the fields corresponding to non-compact generators acquire
kinetic energies with correct signs. Equally surprising is the way Yang-Mills
gauge fields acquire their correct kinetic energies through the coupling to the
non-dynamical antisymmetric components of the vierbeins.Comment: One reference adde
Mechanism, dynamics, and biological existence of multistability in a large class of bursting neurons
Multistability, the coexistence of multiple attractors in a dynamical system,
is explored in bursting nerve cells. A modeling study is performed to show that
a large class of bursting systems, as defined by a shared topology when
represented as dynamical systems, is inherently suited to support
multistability. We derive the bifurcation structure and parametric trends
leading to multistability in these systems. Evidence for the existence of
multirhythmic behavior in neurons of the aquatic mollusc Aplysia californica
that is consistent with our proposed mechanism is presented. Although these
experimental results are preliminary, they indicate that single neurons may be
capable of dynamically storing information for longer time scales than
typically attributed to nonsynaptic mechanisms.Comment: 24 pages, 8 figure
Chiral Perturbation Theory and Finite Size Effects on the Nucleon Mass in unquenched QCD
We calculate finite size effects on nucleon masses in chiral perturbation
theory. We confront the theoretical predictions with N_f=2 lattice results and
discuss chiral extrapolation formulae.Comment: talk at Lattice 03 (spectrum), 3 pages latex, 3 figures. Assignment
of 2 data points to incorrect data sets in plot 1 and of 1 data point in plot
2 corrected. 1 fm lattice result updated. Conclusions unchange
- âŠ