37 research outputs found

    The Phytophthora RXLR Effector Avrblb2 Modulates Plant Immunity by Interfering With Ca2+ Signaling Pathway

    Get PDF
    In plants, subcellular fluctuations in Ca2+ ion concentration are among the earliest responses to biotic and abiotic stresses. Calmodulin, which is a ubiquitous Ca2+ ion sensor in eukaryotes, plays a major role in translating these Ca2+ signatures to cellular responses by interacting with numerous proteins located in plasma membranes, cytoplasm, organelles and nuclei. In this report, we show that one of the Phytophthora RXLR effector, Avrblb2, interacts with calmodulin at the plasma membrane of the plant cells. Using deletion and single amino acid mutagenesis, we found that calmodulin binds to the effector domain of Avrblb2. In addition, we show that most known homologs of Avrblb2 in three different Phytophthora species interact with different isoforms of calmodulin. Type of amino acids at position 69 in Avrblb2, which determines Rbi-blb2 resistance protein-mediated defense responses, is not involved in the Avrblb2-calmodulin interaction. Using in planta functional analyses, we show that calmodulin binding to Avrblb2 is required for its recognition by Rpi-blb2 to incite hypersensitive response. These findings suggest that Avrblb2 by interacting with calmodulin interfere with plant defense associated Ca2+ signaling in plants

    Phytophthora nicotianae diseases worldwide: new knowledge of a long-recognised pathogen

    Get PDF
    Phytophthora nicotianae was first isolated from tobacco at the end of the 19th century. This organism is now considered as one of the most devastating oomycete plant pathogens, with a recognized host range of more than 255 species over five continents and a wide diversity of climates. The economic losses caused by P. nicotianae are difficult to estimate, because of the diversity of its hosts and ecological niches. For these reasons, this pathogen represents a continuous challenge to plant disease management programmes, which frequently rely solely on the use of chemicals. Phytophthora nicotianae is better adapted than its competitors to abiotic stresses, especially to climate warming. As a result, its importance is increasing. This review illustrates, with some examples, how P. nicotianae currently impacts plant economies worldwide, and how it may constitute more severe threats to agriculture and natural ecosystems in the context of global climate change

    Analyses of In Vivo Interaction and Mobility of Two Spliceosomal Proteins Using FRAP and BiFC

    Get PDF
    U1-70K, a U1 snRNP-specific protein, and serine/arginine-rich (SR) proteins are components of the spliceosome and play critical roles in both constitutive and alternative pre-mRNA splicing. However, the mobility properties of U1-70K, its in vivo interaction with SR proteins, and the mobility of the U1-70K-SR protein complex have not been studied in any system. Here, we studied the in vivo interaction of U1-70K with an SR protein (SR45) and the mobility of the U1-70K/SR protein complex using bimolecular fluorescence complementation (BiFC) and fluorescence recovery after photobleaching (FRAP). Our results show that U1-70K exchanges between speckles and the nucleoplasmic pool very rapidly and that this exchange is sensitive to ongoing transcription and phosphorylation. BiFC analyses showed that U1-70K and SR45 interacted primarily in speckles and that this interaction is mediated by the RS1 or RS2 domain of SR45. FRAP analyses showed considerably slower recovery of the SR45/U1-70K complex than either protein alone indicating that SR45/U1-70K complexes remain in the speckles for a longer duration. Furthermore, FRAP analyses with SR45/U1-70K complex in the presence of inhibitors of phosphorylation did not reveal any significant change compared to control cells, suggesting that the mobility of the complex is not affected by the status of protein phosphorylation. These results indicate that U1-70K, like SR splicing factors, moves rapidly in the nucleus ensuring its availability at various sites of splicing. Furthermore, although it appears that U1-70K moves by diffusion its mobility is regulated by phosphorylation and transcription

    Regulation of Plant Developmental Processes by a Novel Splicing Factor

    Get PDF
    Serine/arginine-rich (SR) proteins play important roles in constitutive and alternative splicing and other aspects of mRNA metabolism. We have previously isolated a unique plant SR protein (SR45) with atypical domain organization. However, the biological and molecular functions of this novel SR protein are not known. Here, we report biological and molecular functions of this protein. Using an in vitro splicing complementation assay, we showed that SR45 functions as an essential splicing factor. Furthermore, the alternative splicing pattern of transcripts of several other SR genes was altered in a mutant, sr45-1, suggesting that the observed phenotypic abnormalities in sr45-1 are likely due to altered levels of SR protein isoforms, which in turn modulate splicing of other pre-mRNAs. sr45-1 exhibited developmental abnormalities, including delayed flowering, narrow leaves and altered number of petals and stamens. The late flowering phenotype was observed under both long days and short days and was rescued by vernalization. FLC, a key flowering repressor, is up-regulated in sr45-1 demonstrating that SR45 influences the autonomous flowering pathway. Changes in the alternative splicing of SR genes and the phenotypic defects in the mutant were rescued by SR45 cDNA, further confirming that the observed defects in the mutant are due to the lack of SR45. These results indicate that SR45 is a novel plant-specific splicing factor that plays a crucial role in regulating developmental processes

    Comparative Transcriptome Analysis between a Resistant and a Susceptible Wild Tomato Accession in Response to <i>Phytophthora parasitica</i>

    No full text
    Phytophthora parasitica is one of the most widespread Phytophthora species, which is known to cause multiple diseases in tomato and is capable of infecting almost all plant parts. Our current understanding of tomato-Phytophthora parasitica interaction is very limited and currently nothing is known at the whole genome or transcriptome level. In this study, we have analyzed and compared the transcriptome of a resistant and a susceptible wild tomato accession in response to P. parasitica infection using the RNA-seq technology. We have identified 2657 and 3079 differentially expressed genes (DEGs) in treatment vs control comparison of resistant (Sp-R) and susceptible (Sp-S) samples respectively. Functional annotation of DEGs revealed substantial transcriptional reprogramming of diverse physiological and cellular processes, particularly the biotic stress responses in both Sp-R and Sp-S upon P. parasitica treatment. However, subtle expression differences among some core plant defense related genes were identified and their possible role in resistance development against P. parasitica is discussed. Our results revealed 1173 genes that were differentially expressed only in Sp-R accession upon P. parasitica inoculation. These exclusively found DEGs in Sp-R accession included some core plant defense genes, for example, several protease inhibitors, chitinases, defensin, PR-1, a downy mildew susceptibility factor, and so on, were all highly induced. Whereas, several R genes, WRKY transcriptions factors and a powdery mildew susceptibility gene (Mlo) were highly repressed during the resistance outcome. Analysis reported here lays out a strong foundation for future studies aimed at improving genetic resistance of tomato cultivars against to Phytopphthora species

    Transcriptional and Proteomic Profiling of Aspergillus flavipes in Response to Sulfur Starvation.

    No full text
    Aspergillus flavipes has received considerable interest due to its potential to produce therapeutic enzymes involved in sulfur amino acid metabolism. In natural habitats, A. flavipes survives under sulfur limitations by mobilizing endogenous and exogenous sulfur to operate diverse cellular processes. Sulfur limitation affects virulence and pathogenicity, and modulates proteome of sulfur assimilating enzymes of several fungi. However, there are no previous reports aimed at exploring effects of sulfur limitation on the regulation of A. flavipes sulfur metabolism enzymes at the transcriptional, post-transcriptional and proteomic levels. In this report, we show that sulfur limitation affects morphological and physiological responses of A. flavipes. Transcription and enzymatic activities of several key sulfur metabolism genes, ATP-sulfurylase, sulfite reductase, methionine permease, cysteine synthase, cystathionine β- and γ-lyase, glutathione reductase and glutathione peroxidase were increased under sulfur starvation conditions. A 50 kDa protein band was strongly induced by sulfur starvation, and the proteomic analyses of this protein band using LC-MS/MS revealed similarity to many proteins involved in the sulfur metabolism pathway

    Detection, virulence and genetic diversity of Fusarium species infecting tomato in Northern Pakistan.

    No full text
    In addition to the well-known Fusarium oxysporum f.sp. lycopersici, several other Fusarium species are known to cause extensive worldwide crop losses in tomatoes. Prevalence and identities of Fusarium species infecting tomatoes in Northwest Pakistan is currently not known. In this study, we surveyed and characterized Fusarium species associated with symptomatic tomatoes in Northwest Pakistan using morphological and molecular analyses. Pathogenicity tests revealed varying degrees of virulence with some Fusarium sp. causing severe disease symptoms whereas others displaying mild symptoms. Molecular identification based on Internal Transcribed Spacer (ITS) region and TEF-1α gene sequencing classified all isolates into four major species with a majority (68.9%) belonging to Fusarium incarnatum-equiseti species complex (FIESC), followed by F. graminearum (20.7%), F. acuminatum (6.8%), and F. solani (6.8%). ISSR analyses revealed substantial genetic variability among all the Fusarium population infecting tomatoes. Genetic distance between populations from the central region and the type strain F.o. f.sp. lycopersici from Florida was the highest (0.3662), whereas between the south and central region was the lowest (0.0298), which showed that genetic exchange is negatively effected by distance. High genetic variability suggests that these Fusarium species have the potential to become a major production constraint for tomato growers. Findings in this report would greatly facilitate identification of Fusarium species in developing countries and would provide groundwork for devising and implementing disease management measures for minimizing losses caused by Fusarium species in tomatoes

    Inhibition Of Phytophthora Parasitica And P. Capsici By Silver Nanoparticles Synthesized Using Aqueous Extract Of Artemisia Absinthium

    No full text
    Application of nanoparticles for controlling plant pathogens is a rapidly emerging area in plant disease management, and nanoparticles synthesis methods that are economical and ecofriendly are extensively investigated. In this project, we investigated the potential of silver nanoparticles (AgNPs) synthesized with aqueous extract of Artemisia absinthium against several Phytophthora spp., which cause many economically important crop diseases. In in vitro dose-response tests conducted in microtiter plates, 10 μg ml-1 of AgNPs inhibited mycelial growth of P. parasitica, P. infestans, P. palmivora, P. cinnamomi, P. tropicalis, P. capsici, and P. katsurae. Detailed in vitro dose-response analyses conducted with P. parasitica and P. capsici revealed that AgNPs synthesized with A. absinthium extract were highly potent (IC50:2.1 to 8.3 μg ml-1) and efficacious (100%) in inhibiting mycelial growth, zoospore germination, germ tube elongation, and zoospore production. Interestingly, AgNP treatment accelerated encystment of zoospores. Consistent with in vitro results, in planta experiments conducted in a greenhouse revealed that AgNP treatments prevented Phytophthora infection and improved plant survival. Moreover, AgNP in in planta experiments did not produce any adverse effects on plant growth. These investigations provide a simple and economical method for controlling Phytophthora with AgNP without affecting normal plant physiology
    corecore