7,682 research outputs found

    Learning without Recall: A Case for Log-Linear Learning

    Get PDF
    We analyze a model of learning and belief formation in networks in which agents follow Bayes rule yet they do not recall their history of past observations and cannot reason about how other agents' beliefs are formed. They do so by making rational inferences about their observations which include a sequence of independent and identically distributed private signals as well as the beliefs of their neighboring agents at each time. Fully rational agents would successively apply Bayes rule to the entire history of observations. This leads to forebodingly complex inferences due to lack of knowledge about the global network structure that causes those observations. To address these complexities, we consider a Learning without Recall model, which in addition to providing a tractable framework for analyzing the behavior of rational agents in social networks, can also provide a behavioral foundation for the variety of non-Bayesian update rules in the literature. We present the implications of various choices for time-varying priors of such agents and how this choice affects learning and its rate.Comment: in 5th IFAC Workshop on Distributed Estimation and Control in Networked Systems, (NecSys 2015

    Spectral Clustering for Optical Confirmation and Redshift Estimation of X-ray Selected Galaxy Cluster Candidates in the SDSS Stripe 82

    Full text link
    We develop a galaxy cluster finding algorithm based on spectral clustering technique to identify optical counterparts and estimate optical redshifts for X-ray selected cluster candidates. As an application, we run our algorithm on a sample of X-ray cluster candidates selected from the third XMM-Newton serendipitous source catalog (3XMM-DR5) that are located in the Stripe 82 of the Sloan Digital Sky Survey (SDSS). Our method works on galaxies described in the color-magnitude feature space. We begin by examining 45 galaxy clusters with published spectroscopic redshifts in the range of 0.1 to 0.8 with a median of 0.36. As a result, we are able to identify their optical counterparts and estimate their photometric redshifts, which have a typical accuracy of 0.025 and agree with the published ones. Then, we investigate another 40 X-ray cluster candidates (from the same cluster survey) with no redshift information in the literature and found that 12 candidates are considered as galaxy clusters in the redshift range from 0.29 to 0.76 with a median of 0.57. These systems are newly discovered clusters in X-rays and optical data. Among them 7 clusters have spectroscopic redshifts for at least one member galaxy.Comment: 15 pages, 7 figures, 3 tables, 1 appendix, Accepted by Journal of "Astronomy and Computing

    Learning without Recall by Random Walks on Directed Graphs

    Get PDF
    We consider a network of agents that aim to learn some unknown state of the world using private observations and exchange of beliefs. At each time, agents observe private signals generated based on the true unknown state. Each agent might not be able to distinguish the true state based only on her private observations. This occurs when some other states are observationally equivalent to the true state from the agent's perspective. To overcome this shortcoming, agents must communicate with each other to benefit from local observations. We propose a model where each agent selects one of her neighbors randomly at each time. Then, she refines her opinion using her private signal and the prior of that particular neighbor. The proposed rule can be thought of as a Bayesian agent who cannot recall the priors based on which other agents make inferences. This learning without recall approach preserves some aspects of the Bayesian inference while being computationally tractable. By establishing a correspondence with a random walk on the network graph, we prove that under the described protocol, agents learn the truth exponentially fast in the almost sure sense. The asymptotic rate is expressed as the sum of the relative entropies between the signal structures of every agent weighted by the stationary distribution of the random walk.Comment: 6 pages, To Appear in Conference on Decision and Control 201

    Complexity and Behind the Horizon Cut Off

    Full text link
    Motivated by TTT{\overline T} deformation of a conformal field theory we compute holographic complexity for a black brane solution with a cut off using "complexity=action" proposal. In order to have a late time behavior consistent with Lloyd's bound one is forced to have a cut off behind the horizon whose value is fixed by the boundary cut off. Using this result we compute holographic complexity for two dimensional AdS solutions where we get expected late times linear growth. It is in contrast with the naively computation which is done without assuming the cut off where the complexity approaches a constant at the late time.Comment: 14 pages, 2 figures, refs added, contribution of a counter term is added, minor correction, the final conclusion is not change
    corecore