5 research outputs found

    Gold-containing compound BDG-I inhibits the growth of A549 lung cancer cells through the deregulation of miRNA expression

    No full text
    Gold complex bis(diethyldithiocarbamato-gold(I)) bis(diphenylphosphino) methane (BDG-I) is cytotoxic toward different cancer cell lines. We compared the cytotoxic effect of BDG-I with that of cisplatin in the A549 lung cancer cell line. Additionally, we investigated the molecular mechanism underlying the toxic effect of BDG-I toward the A549 cell line and the identification of cancer-related miRNAs likely to be involved in killing the lung cancer cells. Further, X-ray crystallographic data of the compound were acquired. Using microarray, global miRNA expression profiling in BDG-I-treated A549 cells revealed 64 upregulated and 86 downregulated miRNAs, which targeted 4689 and 2498 genes, respectively. Biological network connectivity of the miRNAs was significantly higher for the upregulated miRNAs than for the downregulated miRNAs. Two of the 10 most upregulated miRNAs (hsa-mir-20a-5p and hsa-mir-15b-5p) were associated with lung cancer. AmiGo2 server and Panther pathway analyses indicated significant enrichment in transcription regulation of miRNA target genes that promote intrinsic kinase-mediated signaling, TGF-?, and GnRH signaling pathways, as well as oxidative stress responses. BDG-I crystal structure X-ray diffraction studies revealed gold?gold intramolecular interaction [Au?Au = 3.1198 (3) �] for a single independent molecule, reported to be responsible for its activity against cancer. Our present study sheds light on the development of novel gold complex with favorable anti-cancer therapeutic functionality.The authors extend their appreciation to the Deanship of Scientific Research at King Saud University for funding this work through the Research Project No. R5-16-02-14 .Scopu

    Assessing the role of toll-like receptor in isolated, standard and enriched housing conditions.

    No full text
    Depression is a common psychiatric disorder that has been poorly understood. Consequently, current antidepressant agents have clinical limitations. Until today, most have exhibited the slow onset of therapeutic action and, more importantly, their effect on remission has been minimal. Thus, the need to find new forms of therapeutic intervention is urgent. The inflammation hypothesis of depression is widely acknowledged and is one that theories the relationship between the function of the immune system and its contribution to the neurobiology of depression. In this research, we utilized an environmental isolation (EI) approach as a valid animal model of depression, employing biochemical, molecular, and behavioral studies. The aim was to investigate the anti-inflammatory effect of etanercept, a tumor necrosis factor-α inhibitor on a toll-like receptor 7 (TLR 7) signaling pathway in a depressive rat model, and compare these actions to fluoxetine, a standard antidepressant agent. The behavioral analysis indicates that depression-related symptoms are reduced after acute administration of fluoxetine and, to a lesser extent, etanercept, and are prevented by enriched environment (EE) housing conditions. Experimental studies were conducted by evaluating immobility time in the force swim test and pleasant feeling in the sucrose preference test. The mRNA expression of the TLR 7 pathway in the hippocampus showed that TLR 7, MYD88, and TRAF6 were elevated in isolated rats compared to the standard group, and that acute treatment with an antidepressant and anti-inflammatory drugs reversed these effects. This research indicates that stressful events have an impact on behavioral well-being, TLR7 gene expression, and the TLR7 pathway. We also found that peripheral administration of etanercept reduces depressive-like behaviour in isolated rats: this could be due to the indirect modulation of the TLR7 pathway and other TLRs in the brain. Furthermore, fluoxetine treatment reversed depressive-like behaviour and molecularly modulated the expression of TLR7, suggesting that fluoxetine exerts antidepressant effects partially by modulating the TLR7 signaling pathway

    Neuromedin U and Structural Analogs: An Overview of their Structure, Function and Selectivity

    No full text
    corecore