6 research outputs found

    2023 SPARC Book Of Abstracts

    Get PDF

    Systematic Review on the Effectiveness of Essential and Carrier Oils as Skin Penetration Enhancers in Pharmaceutical Formulations

    No full text
    Oils, including essential oils and their constituents, are widely reported to have penetration enhancement activity and have been incorporated into a wide range of pharmaceutical formulations. This study sought to determine if there is an evidence base for the selection of appropriate oils for particular applications and compare their effectiveness across different formulation types. A systematic review of the data sources, consisting of Google Scholar, EMBASE, PubMed, Medline, and Scopus, was carried out and, following screening and quality assessment, 112 articles were included within the analysis. The research was classified according to the active pharmaceutical ingredient, dosage form, in vitro/in vivo study, carrier material(s), penetration enhancers as essential oils, and other chemical enhancers. The review identified four groups of oils used in the formulation of skin preparations; in order of popularity, these are terpene-type essential oils (63%), fatty acid-containing essential oils (29%) and, finally, 8% of essential oils comprising Vitamin E derivatives and miscellaneous essential oils. It was concluded that terpene essential oils may have benefits over the fatty acid-containing oils, and their incorporation into advanced pharmaceutical formulations such as nanoemulsions, microemulsions, vesicular systems, and transdermal patches makes them an attractive proposition to enhance drug permeation through the skin

    Systematic Review on the Effectiveness of Essential and Carrier Oils as Skin Penetration Enhancers in Pharmaceutical Formulations

    No full text
    Oils, including essential oils and their constituents, are widely reported to have penetration enhancement activity and have been incorporated into a wide range of pharmaceutical formulations. This study sought to determine if there is an evidence base for the selection of appropriate oils for particular applications and compare their effectiveness across different formulation types. A systematic review of the data sources, consisting of Google Scholar, EMBASE, PubMed, Medline, and Scopus, was carried out and, following screening and quality assessment, 112 articles were included within the analysis. The research was classified according to the active pharmaceutical ingredient, dosage form, in vitro/in vivo study, carrier material(s), penetration enhancers as essential oils, and other chemical enhancers. The review identified four groups of oils used in the formulation of skin preparations; in order of popularity, these are terpene-type essential oils (63%), fatty acid-containing essential oils (29%) and, finally, 8% of essential oils comprising Vitamin E derivatives and miscellaneous essential oils. It was concluded that terpene essential oils may have benefits over the fatty acid-containing oils, and their incorporation into advanced pharmaceutical formulations such as nanoemulsions, microemulsions, vesicular systems, and transdermal patches makes them an attractive proposition to enhance drug permeation through the skin

    Development of Nanoemulsions for Topical Application of Mupirocin

    No full text
    Mupirocin (MUP) is a topical antibacterial agent used to treat superficial skin infections but has limited application due to in vivo inactivation and plasma protein binding. A nanoemulsion formulation has the potential to enhance the delivery of mupirocin into the skin. MUP-loaded nanoemulsions were prepared using eucalyptus oil (EO) or eucalyptol (EU), Tween® 80 (T80) and Span® 80 (S80) as oil phase (O), surfactant (S) and cosurfactant (CoS). The nanoemulsions were characterised and their potential to enhance delivery was assessed using an in vitro skin model. Optimised nanoemulsion formulations were prepared based on EO (MUP-NE EO) and EU (MUP-NE EU) separately. MUP-NE EO had a smaller size with mean droplet diameter of 35.89 ± 0.68 nm and narrower particle size index (PDI) 0.10 ± 0.02 nm compared to MUP-NE EU. Both nanoemulsion formulations were stable at 25 °C for three months with the ability to enhance the transdermal permeation of MUP as compared to the control, Bactroban® cream. Inclusion of EU led to a two-fold increase in permeation of MUP compared to the control, while EO increased the percentage by 48% compared to the control. Additionally, more MUP was detected in the skin after 8 h following MUP-NE EU application, although MUP deposition from MUP-NE EO was higher after 24 h. It may be possible, through choice of essential oil to design nanoformulations for both acute and prophylactic management of topical infections
    corecore