5 research outputs found

    Randomized trial of oxygen weaning strategies following chest compressions during neonatal resuscitation.

    No full text
    BackgroundThe Neonatal Resuscitation Program (NRP) recommends using 100% O2 during chest compressions and adjusting FiO2 based on SpO2 after return of spontaneous circulation (ROSC). The optimal strategy for adjusting FiO2 is not known.MethodsTwenty-five near-term lambs asphyxiated by umbilical cord occlusion to cardiac arrest were resuscitated per NRP. Following ROSC, lambs were randomized to gradual decrease versus abrupt wean to 21% O2 followed by FiO2 titration to achieve NRP SpO2 targets. Carotid blood flow and blood gases were monitored.ResultsThree minutes after ROSC, PaO2 was 229 ± 32 mmHg in gradual wean group compared to 57 ± 13 following abrupt wean to 21% O2 (p < 0.001). PaO2 remained high in the gradual wean group at 10 min after ROSC (110 ± 10 vs. 67 ± 12, p < 0.01) despite similar FiO2 (~0.3) in both groups. Cerebral O2 delivery (C-DO2) was higher above physiological range following ROSC with gradual wean (p < 0.05). Lower blood oxidized/reduced glutathione ratio (suggesting less oxidative stress) was observed with abrupt wean.ConclusionWeaning FiO2 abruptly to 0.21 with adjustment based on SpO2 prevents surge in PaO2 and C-DO2 and minimizes oxidative stress compared to gradual weaning from 100% O2 following ROSC. Clinical trials with neurodevelopmental outcomes comparing post-ROSC FiO2 weaning strategies are warranted.ImpactIn a lamb model of perinatal asphyxial cardiac arrest, abrupt weaning of inspired oxygen to 21% prevents excessive oxygen delivery to the brain and oxidative stress compared to gradual weaning from 100% oxygen following return of spontaneous circulation. Clinical studies assessing neurodevelopmental outcomes comparing abrupt and gradual weaning of inspired oxygen after recovery from neonatal asphyxial arrest are warranted

    Effect of a Larger Flush Volume on Bioavailability and Efficacy of Umbilical Venous Epinephrine during Neonatal Resuscitation in Ovine Asphyxial Arrest.

    No full text
    The 7th edition of the Textbook of Neonatal Resuscitation recommends administration of epinephrine via an umbilical venous catheter (UVC) inserted 2-4 cm below the skin, followed by a 0.5-mL to 1-mL flush for severe bradycardia despite effective ventilation and chest compressions (CC). This volume of flush may not be adequate to push epinephrine to the right atrium in the absence of intrinsic cardiac activity during CC. The objective of our study was to evaluate the effect of 1-mL and 2.5-mL flush volumes after UVC epinephrine administration on the incidence and time to achieve return of spontaneous circulation (ROSC) in a near-term ovine model of perinatal asphyxia induced cardiac arrest. After 5 min of asystole, lambs were resuscitated per Neonatal Resuscitation Program (NRP) guidelines. During resuscitation, lambs received epinephrine through a UVC followed by 1-mL or 2.5-mL normal saline flush. Hemodynamics and plasma epinephrine concentrations were monitored. Three out of seven (43%) and 12/15 (80%) lambs achieved ROSC after the first dose of epinephrine with 1-mL and 2.5-mL flush respectively (p = 0.08). Median time to ROSC and cumulative epinephrine dose required were not different. Plasma epinephrine concentrations at 1 min after epinephrine administration were not different. From our pilot study, higher flush volume after first dose of epinephrine may be of benefit during neonatal resuscitation. More translational and clinical trials are needed
    corecore