14 research outputs found

    ARL3 mutations cause Joubert syndrome by disrupting ciliary protein composition

    Get PDF
    Joubert syndrome (JBTS) is a genetically heterogeneous autosomal recessive neurodevelopmental ciliopathy. We investigated further the underlying genetic etiology of Joubert syndrome by studying two unrelated families in whom JBTS was not associated with pathogenic variants in known JBTSrelated genes. Combined autozygosity mapping of both families highlighted a candidate locus on chromosome 10 (chr10: 101569997-109106128 (hg 19)), and exome sequencing revealed two missense variants in ARL3 within the candidate locus. The encoded protein, ADP Ribosylation Factor-Like GTPase 3, ARL3, is a small GTP-binding protein that is involved in directing lipid-modified proteins into the cilium in a GTP-dependent manner. Both missense variants replace the highly conserved Arg149 residue, which we show to be necessary for the interaction with its guanine nucleotide exchange factor ARL13B, such that the mutant protein is associated with reduced INPP5E and NPHP3 localisation in cilia. We propose that ARL3 provides a potential hub in the network of encoded ciliopathy genes, whereby perturbation of ARL3 results in the mislocalisation of multiple ciliary proteins due to abnormal displacement of lipidated protein cargo

    ADAMTS19-associated heart valve defects: Novel genetic variants consolidating a recognizable cardiac phenotype

    Get PDF
    Recently, ADAMTS19 was identified as a novel causative gene for autosomal recessive heart valve disease (HVD), affecting mainly the aortic and pulmonary valves. Exome sequencing and data repository (CentoMD) analyses were performed to identify patients with ADAMTS19 variants (two families). A third family was recognized based on cardiac phenotypic similarities and SNP array homozygosity. Three novel loss of function (LoF) variants were identified in six patients from three families. Clinically, all patients presented anomalies of the aortic/pulmonary valves, which included thickening of valve leaflets, stenosis and insufficiency. Three patients had (recurrent) subaortic membrane, suggesting that ADAMTS19 is the first gene identified related to discrete subaortic stenosis. One case presented a bi-commissural pulmonary valve. All patients displayed some degree of atrioventricular valve insufficiency. Other cardiac anomalies included atrial/ventricular septal defects, persistent ductus arteriosus, and mild dilated ascending aorta. Our findings confirm that biallelic LoF variants in ADAMTS19 are causative of a specific and recognizable cardiac phenotype. We recommend considering ADAMTS19 genetic testing in all patients with multiple semilunar valve abnormalities, particularly in the presence of subaortic membrane. ADAMTS19 screening in patients with semilunar valve abnormalities is needed to estimate the frequency of the HVD related phenotype, which might be not so rare

    6-Pyruvoyltetrahydropterin Synthase Deficiency: Review and Report of 28 Arab Subjects

    Get PDF
    BACKGROUND: Tetrahydrobiopterin is an essential cofactor for the hydroxylation of aromatic amino acids phenylalanine, tyrosine, and tryptophan. Therefore, tetrahydrobiopterin deficiency results in hyperphenylalaninemia as well as dopamine and serotonin depletion in the central nervous system. The enzyme 6-pyruvoyltetrahydropterin synthase catalyzes the second step of de novo synthesis of tetrahydrobiopterin, and its deficiency is the most frequent cause of tetrahydrobiopterin metabolism disorders. METHOD: We conducted a retrospective chart review of 28 subjects from 24 families with molecularly confirmed 6-pyruvoyltetrahydropterin synthase deficiency from six centers in three Arab countries. We reviewed clinical, biochemical, and molecular data. We also reviewed previously published cohorts of subjects with 6-pyruvoyltetrahydropterin synthase deficiency. RESULTS: Similar to previous observations, we show that early treatment (less than two months) is associated with better outcome. We identify eight PTS variants in 24 independent families. The most common variant is (c.238A>G; p.M80V) with an allele count of 33%. We also identify one novel variant (c.2T>G; p.?). CONCLUSION: The deficiency of 6-pyruvoyltetrahydropterin synthase is relatively common in the Arab population and should be considered in individuals with hyperphenylalaninemia. More natural history studies with comprehensive biochemical and molecular genetics data are needed for a robust base for the development of future therapy

    Accelerating Novel Candidate Gene Discovery in Neurogenetic Disorders via Whole-Exome Sequencing of Prescreened Multiplex Consanguineous Families

    Get PDF
    Our knowledge of disease genes in neurological disorders is incomplete. With the aim of closing this gap, we performed whole-exome sequencing on 143 multiplex consanguineous families in whom known disease genes had been excluded by autozygosity mapping and candidate gene analysis. This prescreening step led to the identification of 69 recessive genes not previously associated with disease, of which 33 are here described (SPDL1, TUBA3E, INO80, NID1, TSEN15, DMBX1, CLHC1, C12orf4, WDR93, ST7, MATN4, SEC24D, PCDHB4, PTPN23, TAF6, TBCK, FAM177A1, KIAA1109, MTSS1L, XIRP1, KCTD3, CHAF1B, ARV1, ISCA2, PTRH2, GEMIN4, MYOCD, PDPR, DPH1, NUP107, TMEM92, EPB41L4A, and FAM120AOS). We also encountered instances in which the phenotype departed significantly from the established clinical presentation of a known disease gene. Overall, a likely causal mutation was identified in >73% of our cases. This study contributes to the global effort toward a full compendium of disease genes affecting brain function

    Biallelic variants in the transcription factor PAX7 are a new genetic cause of myopathy

    No full text
    Skeletal muscle growth and regeneration rely on muscle stem cells, called satellite cells. Specific transcription factors, particularly PAX7, are key regulators of the function of these cells. Knockout of this factor in mice leads to poor postnatal survival; however, the consequences of a lack of PAX7 in humans have not been established. Purpose Skeletal muscle growth and regeneration rely on muscle stem cells, called satellite cells. Specific transcription factors, particularly PAX7, are key regulators of the function of these cells. Knockout of this factor in mice leads to poor postnatal survival; however, the consequences of a lack of PAX7 in humans have not been established. Methods Here, we study five individuals with myopathy of variable severity from four unrelated consanguineous couples. Exome sequencing identified pathogenic variants in the PAX7 gene. Clinical examination, laboratory tests, and muscle biopsies were performed to characterize the disease. Results The disease was characterized by hypotonia, ptosis, muscular atrophy, scoliosis, and mildly dysmorphic facial features. The disease spectrum ranged from mild to severe and appears to be progressive. Muscle biopsies showed the presence of atrophic fibers and fibroadipose tissue replacement, with the absence of myofiber necrosis. A lack of PAX7 expression was associated with satellite cell pool exhaustion; however, the presence of residual myoblasts together with regenerating myofibers suggest that a population of PAX7-independent myogenic cells partially contributes to muscle regeneration. Conclusion These findings show that biallelic variants in the master transcription factor PAX7 cause a new type of myopathy that specifically affects satellite cell survival.German Bundesministerium für Bildung und Forschung through the Juniorverbund in der Systemmedizin “mitOmics” (FKZ01ZX1405C to T.B.H.) and Horizon2020 through the E-Rare project GENOMIT (01GM1603 and 01GM1207 for H.P. and FWFI2741B26 for J.A.M.) and the Deutsche Forschungsgemeinschaft (SCHO754/52 to L.S. and BA2427/22 to P.B.) as well as the Vereinigung zur Förderung Pädiatrischer Forschung und Fortbildung Salzburg, the EU FP7 Mitochondrial European Educational Training Project (317433 to H.P. and J.A.M.), and the EU Horizon2020 Collaborative Research Project SOUND (633974 to H.P.). N.A.D. is supported by grants from the Fonds de recherche du Québec–Santé (35015), Canadian Institutes of Health Research (388296), Rare Disease Foundation (2301), and CHU Sainte-Justine Foundation. N.A.D. acknowledges the support of ThéCell and Stem Cell Netwo
    corecore