19 research outputs found

    Valuable Modern Strategy (ATR-IR) Spectroscopy Technique to Distinguish Between Normal and Lung Cancer Tissue

    Get PDF
    Background: Diagnosis of lung cancer is often delayed because most of the patients are asymptomatic during the primary cancer stages. Infrared spectroscopy is an improved technique compared with the others for identifying abnormal tissue types because of its spatial and spectral capabilities. Therefore, this study is taking an advanced advantage of the physical and optical properties of the attenuated total reflection Fourier-transform infrared system. Methods: The attenuated total reflection Fourier-transform infrared has been applied for cancer detection at infrared wavelengths that range from 4000-400 cm-1. This technique may be a beneficial diagnostic method because it uses the principles of physics, as optics and photonics with a specific wavelength region, which can make an immense difference. Results: The attenuated total reflection Fourier-transform infrared system spectra of normal lung tissue showed main peaks at 3321 and 1637 cm-1, which has been assigned to the OH and C=O function group of amide I and has intensities of approximately 61% (OH) and 76% (C=O). That intensity has been shown to decrease in the cancer tissue. A new peak at 1545 cm-1 appeared in the cancerous tissue, which could be an amide II. Conclusions: The identification of a biochemical component from either normal or cancerous lung tissue would help to evaluate malignant tissue. Thus, the obtained results indicated degradation of the biochemistry component (protein) of the tissue due to carcinogenic disease

    Towards Wind Energy-based Charging Stations: A Review of Optimization Methods

    Get PDF
    Due to the growing importance of renewable sources in sustainable energy systems, the strategic deployment of robust optimization techniques plays a crucial role in the design of Electric Vehicle Charging Stations (EVCSs). These stations need to smoothly incorporate renewable sources, ensuring optimal energy utilization. This study provides a comprehensive overview of the methodologies and approaches employed in the enhancement of wind energy based EVCSs. The aim is to discern the most efficacious techniques for optimizing charging stations. Researchers engage diverse strategies and methodologies in the realm of sizing and optimization, encompassing a spectrum of algorithmic implementations and software solutions. Evidently, each algorithm or software application bears distinctive merits and demerits. Singular reliance on a solitary algorithm or software for charging utility optimization is discerned to be potentially limiting. The investigation reveals that achieving better results in Electric Vehicle Charging Station (EVCS) optimization is facilitated by the collaborative use of multiple algorithms like GA, PSO, and ACO, among others, or software tools like Homer or RETScreen

    Techno-economic analysis of a wind-energy-based charging station for electric vehicles in high-rise buildings in Malaysia

    Get PDF
    Renewable energy sources have become necessary for long-term energy sustainability due to the increased demand for electric cars and worrisome rises in carbon dioxide emissions from traditional energy sources. Furthermore, transportation is one of the sectors that uses the most energy on the planet, accounting for 24% of overall consumption. Fossil fuels are still the dominant energy source for balancing global demand/supply dynamics. Supporting laws and regulations have enhanced the first phase of environmentally friendly energy-resource consumption. This has spurred the development of new solutions that cut greenhouse-gas emissions and reduce the air pollution produced by internal combustion engines that are fuelled by fossil fuels. Wind energy is one of the clean energy sources that may be utilised for this purpose. Wind energy has been used to power electric-car-charging infrastructure, generally in a hybrid mode with another renewable source. This research examines the possibility of using wind energy as a standalone energy source to support electric-vehicle-charging infrastructure. Using data from Malacca, Malaysia, and HOMER software, the project will build and optimise a standalone wind-powered charging station. An RC-5K-A wind turbine coupled to a battery and converter is the appropriate choice for the system. The findings demonstrate that the turbine can produce 214,272 kWh per year at the cost of USD 0.081/kWh, confirming wind’s future feasibility as an energy-infrastructure support source

    Comparison Of Casimir , Elastic, Electrostatic Forces For A Micro-Cantilever

    Get PDF
    Casimir force is a cause of stiction (adhesion) between metal surfaces in Micro-Electro Mechanical Systems (MEMS). Casimir Force depends strongly on the separation of the two surfaces and the contact area. This thesis reviews the theory and prior experimental demonstrations of the Casimir force. Then the Casimir attractive force is calculated for a particular MEMS cantilever device, in which the metal cantilever tip is required to repeatedly touch and release from a metal tip pad on the substrate surface in response to a periodic driving electrostatic force. The elastic force due to the bending of the cantilever support arms is also a consideration in the device operation. The three forces are calculated analytically and compared as a function of cantilever tip height. Calculation of the electrostatic force uses coefficients of capacitance and electrostatic induction determined numerically by the finite element method, including the effect of permittivity for the structural oxide. A condition on the tip area to allow electrostatic release of the tip from the surface against Casimir sticking and elastic restoring forces is established

    Thermomechancial Characterization in a Radiant Energy Imager Using Null Switching

    No full text
    Abstract Thermomechanical noise for a MEMs-based infrared detector using null switching (US patent 7977635) depends on vibrational amplitude, since IR radiation is transduced to a change in the duty cycle of a repetitively closing switch. Equipartition theorem determines the maximum rms vibrational amplitude for the fabricated cantilever switch at its natural frequency. This determines the timing uncertainty, NEP, and NETD. We estimate NETD to fall in the range 0.13 -1.5 K for a device with ~20 ÎĽm pitch

    Thermomechancial Characterization In A Radiant Energy Imager Using Null Switching

    No full text
    Thermomechanical noise for a MEMs-based infrared detector using null switching (US patent 7977635) depends on vibrational amplitude, since IR radiation is transduced to a change in the duty cycle of a repetitively closing switch. Equipartition theorem determines the maximum rms vibrational amplitude for the fabricated cantilever switch at its natural frequency. This determines the timing uncertainty, NEP, and NETD. We estimate NETD to fall in the range 0.13 - 1.5 K for a device with ~20 μm pitch. © 2014 SPIE

    Planetary Atmospheres Minor Species Sensor (Pamss)

    No full text
    The Planetary Atmospheres Minor Species Sensor (PAMSS) is an ultra-trace gas sensor. This paper reports its transition from a Technical Readiness Level of 4 (TRL4) to TRL 5 and an established path forward to TRL6. This report describes tests of PAMSS in chambers that simulate a balloon flight to 30 km. Lessons learned inform a number of improvements, which are being implemented for a balloon flight planned for June 2014. © 2014 SPIE

    Assessment of Wayfinding Performance in Complex Healthcare Facilities: A Conceptual Framework

    No full text
    Wayfinding is considered to be one of the most demanding challenges to be performed by hospitals’ users. Wayfinding has been an interest among researchers from different fields, such as architecture, interior design, cognitive psychology, and facilities management, to name a few. Previous scholars have highlighted the need for a holistic framework taking into consideration both user and environmental factors. A narrative review of the literature was carried out to understand the full extent of the issue and address the ever-increasing demand for a holistic assessment framework. This article attempts to address the underlying gap by proposing a comprehensive framework that takes into account both facets of the issue through a narrative review of the literature to some of the most prominent research attempts to address the problem of wayfinding in complex healthcare settings. Furthermore, the proposed framework can assist both researchers and practicing professionals by providing a comprehensive understanding of the issue of complex wayfinding as well as of the variables to be investigated in the assessment process

    A User-Centered Evaluation of Wayfinding in Outpatient Units of Public Hospitals in Malaysia: UMMC as a Case Study

    No full text
    The difficulty of finding one’s way in a complex structure has been a long-standing issue of many buildings with highly institutionalized functions. This has been especially observed in hospital buildings as an issue that can cause various adverse outcomes for both the institution and the user. Therefore, regular evaluation of the existing wayfinding system and its efficacy is needed. This study aimed to evaluate the wayfinding system efficacy in an outpatient unit of a Malaysian public hospital in order to provide information that could help guide future upgrade initiatives for existing healthcare facilities’ wayfinding systems. This study employed a user survey questionnaire to evaluate the wayfinding system currently in use and investigate users’ needs for a better wayfinding system. The statistical analysis of the gathered data indicated a higher than average level of dissatisfaction regarding the existing wayfinding system. The findings of the study suggest the need for an upgrade in the physical environment. Furthermore, the results of this study suggest the need to devise a set of guidelines to be employed when designing wayfinding systems in Malaysia’s public hospitals

    Vertical Electrostatic Force In Mems Cantilever Ir Sensor

    No full text
    A MEMS cantilever IR detector that repetitively lifts from the surface under the influence of a saw-tooth electrostatic force, where the contact duty cycle is a measure of the absorbed IR radiation, is analyzed. The design is comprised of three parallel conducting plates. Fixed buried and surface plates are held at opposite potential. A moveable cantilever is biased the same as the surface plate. Calculations based on energy methods with position-dependent capacity and electrostatic induction coefficients demonstrate the upward sign of the force on the cantilever and determine the force magnitude. 2D finite element method calculations of the local fields confirm the sign of the force and determine its distribution across the cantilever. The upward force is maximized when the surface plate is slightly larger than the other two. The electrostatic repulsion is compared with Casimir sticking force to determine the maximum useful contact area. MEMS devices were fabricated and the vertical displacement of the cantilever was observed in a number of experiments. The approach may be applied also to MEMS actuators and micromirrors. © 2014 SPIE
    corecore