54 research outputs found

    Quantifying road roughness: multiresolution and near real-time analysis

    Get PDF
    Road roughness is a key parameter for road construction and for assessing ride quality during the life of paved and unpaved road systems. The quarter-car model (QC model), is a standard mathematical tool for estimating suspension responses and can be used for summative or pointwise analysis of vehicle response to road geometry. In fact, transportation agencies specify roughness requirements as summative values for pavement projects that affect construction practices and contractor pay factors. The International Roughness Index (IRI), a summative statistic of quarter-car suspension response, is widely used to characterize overall roughness profiles of pavement stretches but does not provide sufficient detail about the frequency or spatial distribution of roughness features. This research focuses on two pointwise approaches, continuous roughness maps and wavelets analysis, that both characterize overall roughness and identify localized features and compares these findings with IRI results. Automated algorithms were developed to preform finite difference analysis of point cloud data collected by three-dimensional (3D) stationary terrestrial laser scans of paved and unpaved roads. This resulted in continuous roughness maps that characterized both spatial roughness and localized features. However, to address the computational limitations of finite difference analysis, Fourier and wavelets (discrete and continuous wavelet transform) analyses were conducted on sample profiles from the federal highway administration (FHWA) Long Term Pavement Performance data base. The Fourier analysis was performed by transforming profiles into frequency domain and applying the QC filter to the transformed profile. The filtered profiles are transformed back to spatial domain to inspect the location of high amplitudes in the suspension rate profiles. Finite difference analysis provides suspension responses in spatial domain, on the other hand Fourier analysis can be performed in either frequency or spatial domains only. To describe the location and frequency content of localized features in a profile, wavelet filters were customized to separate the suspension response profiles into sub profiles with known frequency bands. Other advantages of wavelets analysis includes data compression, making inferences from compressed data, and analyzing short profiles (\u3c 7.6 m). The proposed approaches present the basis for developing real-time autonomous algorithms for smoothness based quality control and maintenance

    Impact of Pavement Surface Condition on Roadway Departure Crash Risk in Iowa

    Get PDF
    Safety performance is a crucial component of highway network performance evaluation. Besides their devastating impact on roadway users, traffic crashes lead to substantial economic losses on both personal and societal levels. Due to the complexity of crash events and the unique conditions in each country and state, empirical local calibration for the correlation between attributes of interest and the safety performance is always recommended. Limited studies have established a procedure to analyze the impact of pavement condition on traffic safety in a risk analysis scheme. This study presents a thorough analysis of some roadway departure crashes which occurred in Iowa between 2006 and 2016. All crash records were mapped onto one-mile segments with known traffic volume (i.e., AADT), posted speed limits (SL), skid numbers (SN), ride qualities (IRI), and rut depths (RD) in a geographic information system (GIS) database. The crash records were correlated to the pavement surface condition (i.e., SN, IRI, and RD) using negative binomial regression models. Moreover, a novel risk analysis framework is introduced to perform crash risk assessment and evaluate the possible consequences for a given combination of events. The analysis shows a significant impact of pavement skid resistance on roadway-departure crashes under all accident conditions and severities. Risk analysis will facilitate coordination between the pavement management system and safety management system in the future, which will help with optimizing the overall highway network performance

    Inspired by Nature: Redox Modulators and Natural Nanoparticles

    Get PDF
    Numerous secondary metabolites found in edible plants modulate intracellular redox processes and are suggested to prevent certain diseases, especially in ageing organisms. Since such nutraceuticals provide the basis for new and innovative designer diets and therapies, extracting these substances and their potential from plants has become a focus of research, with nanotechnology and natural nanoparticles at the centre of some of these developments

    Synthesis, Structural Characterization, and Biological Activities of Organically Templated Cobalt Phosphite (H2DAB)[Co(H2PO3)4]·2H2O

    Get PDF
    A novel hybrid cobalt phosphite, (H2DAB)[Co(H2PO3 )4 ] 2H2O, was synthesized by using a slow evaporation method in the presence of cobalt nitrate, phosphorous acid, and 1,4-diaminobutane (DAB = 1,4-diaminobutane) as a structure-directing agent. Single-crystal X-ray diffraction analysis showed that the compound crystallizes in the triclinic system (space group P-1(n.2)) with the following unit cell parameters (Å, ◦ ) a = 5.4814 (3), b = 7.5515 (4), c = 10.8548 (6), α = 88.001 (4), β = 88.707 (5), γ = 85.126 (5), and V = 447.33 (4) Å3 . The crystal structure is built up from corner-sharing [CoO6 ] octahedra, forming chains parallel to [001], which are interconnected by H2PO3 − pseudo-tetrahedral units. The diprotonated cations, residing between the parallel chains, interact with the inorganic moiety via hydrogen bonds, thus leading to the formation of the 3D crystal structure. The Fourier transform infrared spectrum showed characteristic bands corresponding to the phosphite group and the organic amine. The thermal behavior of the compound mainly consisted of the loss of its organic moiety and the water molecules. The biological tests exhibited significant activity against Candida albicans and Escherichia coli strains at different concentrations, while less inhibitory activity was pronounced against Staphylococcus epidermidis and Saccharomyces cerevisiae, and in the case of multi-cellular organisms, no activity against the nematode model Steinernema feltiae was detected

    Synthesis, Structural Characterization, and Biological Activities of Organically Templated Cobalt Phosphite (C4N2H14)Co(H2PO3)4·2H2O

    Get PDF
    A novel hybrid phosphite [(C4N2H14)Co(H2PO3)4·2H2O] was synthesized with 1,4- diaminobutane (dabn) as a structure-directing agent using slow evaporation method. Single crystal X-ray diffraction analysis showed that it crystallizes in the triclinic system (S.G: P-1, #2) with the following unit cell parameters (Å, °) a = 5.4814 (3), b = 7.5515 (4), c = 10.8548 (6), α = 88.001 (4), β = 88.707 (5), γ = 85.126 (5). The crystal structure was built up from corner-sharing [CoO6]-octahedrons, forming chains parallel to [001], which are interconnected by H2PO3 pseudo-pyramid units. The diprotonated 1,4-diaminobutane molecules, residing between the parallel chains, interacted with the inorganic moiety via hydrogen bonds leading thus to the formation of the 3D crystal structure. The Fourier transform infrared result exhibited characteristic bands corresponding to the phosphite group and the organic molecule. The thermal decomposition of the compound consists mainly of the loss of the organic moiety and the water molecules. The biological tests exhibited significant activity against Candida albicans and Escherichia coli strains in all used concentrations, while less activity was pronounced when tested against Staphylococcus epidermidis and Saccharomyces cerevisiae, while there was no activity against the nematode model Steinernema feltiae
    corecore