15 research outputs found
Recommended from our members
Solution-processable, niobium-doped titanium oxide nanorods for application in low-voltage, large-area electronic devices
We report for the first time the one-step synthesis of solution-processable, highly crystalline, niobium-doped titanium dioxide (Nb-TiO2) nanorods in the anatase phase by the hydrolytic condensation of Ti(OiPr)4 and niobium(V) ethoxide using oleic acid as a structure-directing and stabilising agent. These novel surface-stabilised nanorods can be easily dispersed in common solvents at relatively high concentration (∼10%) and deposited as uniform, thin and transparent films on planar substrates for the fabrication of electronic devices. The small size of the nanoparticles synthesized represents an important advance in achieving high-k dielectric thin films smooth enough to be suitable for OFET applications and the plastic electronics filed in general. Preliminary investigations show that the dielectric constant, k, of niobium-doped (7.1 wt%) titanium dioxide (Nb-TiO2) nanorods at frequencies in the region of 100 kHz–1 MHz, are more a third greater (k > 8) than that (k = 6) determined for the corresponding undoped titanium dioxide (TiO2) nanorods. The current–voltage (J–V) behaviour of these devices reveal that niobium-doping improves, by reducing, the leakage current of these devices, thereby preventing hard dielectric breakdown of devices incorporating these new nanorods
Recommended from our members
Solution-processable and photopolymerisable TiO2 nanorods as dielectric layers for thin film transistors
We report the fabrication of a solution-processed n-type Thin Film Transistor (TFT) with current on/off ratios of 104, a turn-on voltage (VON) of 1.2 V and a threshold voltage (VT) of 6.2 V. The TFT incorporates an insoluble and intractable dielectric layer (k = 7–9) prepared in situ from solution-processed and then photopolymerised ligand-stabilised, inorganic/organic TiO2 nanorods. A solution processed zinc oxide (ZnO) layer acts as the semiconductor. The new surface-modified TiO2 nanorods were synthesised using a ligand replacement process with a monolayer coating of photopolymerisable 10-undecynylphosphonic acid (10UCYPA) to render them both soluble in common organic solvents and be photopolymerisable using UV-illumination after having been deposited on substrate surfaces from solution and drying
Progress on Modified Calcium Oxide Derived Waste-Shell Catalysts for Biodiesel Production
The dwindling of global petroleum deposits and worsening environmental issues have triggered researchers to find an alternative energy such as biodiesel. Biodiesel can be produced via transesterification of vegetable oil or animal fat with alcohol in the presence of a catalyst. A heterogeneous catalyst at an economical price has been studied widely for biodiesel production. It was noted that various types of natural waste shell are a potential calcium resource for generation of bio-based CaO, with comparable chemical characteristics, that greatly enhance the transesterification activity. However, CaO catalyzed transesterification is limited in its stability and studies have shown deterioration of catalytic reactivity when the catalyst is reused for several cycles. For this reason, different approaches are reviewed in the present study, which focuses on modification of waste-shell derived CaO based catalyst with the aim of better transesterification reactivity and high reusability of the catalyst for biodiesel production. The catalyst stability and leaching profile of the modified waste shell derived CaO is discussed. In addition, a critical discussion of the structure, composition of the waste shell, mechanism of CaO catalyzed reaction, recent progress in biodiesel reactor systems and challenges in the industrial sector are also included in this review
Lyotropic 'hairy' TiO2 nanorods
We report the synthesis of the first stable, solution-processable and photocrosslinkable hybrid organic/
inorganic titanium dioxide nanorods as ‘hairy rods’ coated with phosphonate ligands with photoreactive
coumarin groups located in a terminal position. The relationships between the chemical structure of the
diethyl-u-[(7-oxycoumaryl)-n-alkyl]phosphonate ligands on the ligand exchange rate (LER) and the
solubility of the resultant ligand-stabilized titanium dioxide nanorods in organic solvents are elucidated.
These TiO2 nanorods, with an organic ligand coating, are short enough (aspect ratio ¼ 5–8) to be
dissolved in chlorobenzene at high concentrations, but long enough to form lyotropic nematic liquid
crystals. These colloidal solutions are used to deposit a thin, uniform layer of hybrid organic/inorganic
TiO2 nanorods with their long axes in the plane of a flat, smooth substrate through a self-organization
process. Standard photolithographic patterning creates an insoluble dielectric layer of the desired
thickness, smoothness and uniformity and with a dielectric constant of sufficient magnitude, k ¼ 8,
suitable for the fabrication of multilayer, plastic electronic devices using solution-based fabrication
techniques, such as ink-jet printing, used in roll-to-roll manufacturing
Recommended from our members
Protein-altering variants associated with body mass index implicate pathways that control energy intake and expenditure underpinning obesity
Genome-wide association studies (GWAS) have identified >250 loci for body mass index (BMI), implicating pathways related to neuronal biology. Most GWAS loci represent clusters of common, non-coding variants from which pinpointing causal genes remains challenging. Here, we combined data from 718,734 individuals to discover rare and low-frequency (MAF<5%) coding variants associated with BMI. We identified 14 coding variants in 13 genes, of which eight in genes (ZBTB7B, ACHE, RAPGEF3, RAB21, ZFHX3, ENTPD6, ZFR2, ZNF169) newly implicated in human obesity, two (MC4R, KSR2) previously observed in extreme obesity, and two variants in GIPR. Effect sizes of rare variants are ~10 times larger than of common variants, with the largest effect observed in carriers of an MC4R stop-codon (p.Tyr35Ter, MAF=0.01%), weighing ~7kg more than non-carriers. Pathway analyses confirmed enrichment of neuronal genes and provide new evidence for adipocyte and energy expenditure biology, widening the potential of genetically-supported therapeutic targets to treat obesity