9 research outputs found

    Fermentation performance and nutritional assessment of physically processed lentil and green pea flour

    Get PDF
    BACKGROUND A significant amount of nutrients, including dietary fibers, proteins, minerals, and vitamins are present in legumes, but the presence of anti‐nutritional factors (ANFs) like phytic acid, tannins, and enzyme inhibitors impact the consumption of legume and nutrient availability. In this research, the effect of a physical process (sonication or precooking) and fermentation with Lactobacillus plantarum and Pediococcus acidilactici on ANFs of some legumes was evaluated. RESULTS Total phenolic contents were significantly (p\u3c0.05) reduced for modified and fermented substrates compared to non‐fermented controls. Trypsin inhibitory activity (TIA) was reduced significantly for all substrates except for unsonicated soybean and lentil fermented with L. plantarum and P. acidilactici. When physical processing was done, there was a decrease in TIA for all the substrate. Phytic acid content decreased for physically modified soybean and lentil but not significantly for green pea. Even though there was a decrease in ANFs, there was no significant change in in vitro protein digestibility for all substrates except for unsonicated L. plantarum fermented soybean flour and precooked L. plantarum fermented lentil. Similarly, there was change in amino acid content when physically modified and fermented. CONCLUSION Both modified and unmodified soybean flour, green pea flour, and lentil flour supported the growth of L. plantarum and P. acidilactici. The fermentation of this physically processed legume and pulse flours influenced the non‐nutritive compounds, thereby potentially improving nutritional quality and usage

    Evaluating the User Physical Stresses Associated with Watching 3D and 2D Displays over Extended Time Using Heart Rate Variability, Galvanic Skin Resistance, and Performance Measure

    No full text
    This paper compares the effects of viewing videos with 2D and 3D displays with regard to the viewing distance (3H vs. 6H, where H is the height of the screen) and viewing time to determine the physical stresses in terms of heart rate variability, galvanic skin resistance (GSR), and performance of the viewer (percent of correct responses). Twenty healthy male university students with a mean age ± standard deviation of 27.7 ± 2.53 years participated in this study as volunteers. None had color blindness, and all had normal vision acuity. Display type by viewing distance interaction had a significant effect on most of the heart rate variability measures and associated with watching time for the GSR responses. The results concluded that viewing the 3D display from a short viewing distance produced significantly high physical stresses compared to viewing the 2D display from the same short viewing distance. However, the 3D display seemed to impart lower physical stress than the 2D display at long viewing distances. The findings of this study indicate that physical stresses appeared significant at close viewing distance after watching a 3D display for 50 min and increased with continued watching time. In addition, viewer performance was higher for the 3D compared to 2D display type

    Effects of Viewing Displays from Different Distances on Human Visual System

    No full text
    The current stereoscopic 3D displays have several human-factor issues including visual-fatigue symptoms such as eyestrain, headache, fatigue, nausea, and malaise. The viewing time and viewing distance are factors that considerably affect the visual fatigue associated with 3D displays. Hence, this study analyzes the effects of display type (2D vs. 3D) and viewing distance on visual fatigue during a 60-min viewing session based on electroencephalogram (EEG) relative beta power, and alpha/beta power ratio. In this study, twenty male participants watched four videos. The EEGs were recorded at two occipital lobes (O1 and O2) of each participant in the pre-session (3 min), post-session (3 min), and during a 60-min viewing session. The results showed that the decrease in relative beta power of the EEG and the increase in the alpha/beta ratio from the start until the end of the viewing session were significantly higher when watching the 3D display. When the viewing distance was increased from 1.95 m to 3.90 m, the visual fatigue was decreased in the case of the 3D-display, whereas the fatigue was increased in the case of the 2D-display. Moreover, there was approximately the same level of visual fatigue when watching videos in 2D or 3D from a long viewing distance (3.90 m)

    Investigating the Immediate Influence of Moderate Pedal Exercises during an Assembly Work on Performance and Workload in Healthy Men

    No full text
    Physical inactivity has increased in prevalence among adults in industrialized and developing countries owing to the fact that the majority of job situations require individuals to remain seated for extended periods of time. This research aims to evaluate the influence of cycling on a stationary bike while executing a keyboard assembly task on the task completion time, error percentage, and physiological and subjective measurements. The physiological measures were electroencephalography (EEG) and electrocardiographic (ECG) signal responses, whereas the subjective measures were subjective workload ratings and subjective body discomforts. Two variables were evaluated, namely assembly methods (with versus without pedal exercises at a moderate intensity) and session testing (pre- versus post-test). Thus, the repeated measures design (i.e., assembly method by session testing of participants) was used. According to the completion time, error %, participant self-reports, and ECG and EEG statistical analysis data, the participants’ performances in the keyboard assembly task did not decrease while they performed pedaling exercises (p > 0.05). Additionally, when participants completed the assembly task while executing the pedaling exercises, the mean inter-beat (RR) intervals significantly reduced (p < 0.05) while the mean heart rate increased (p < 0.05), which mean that pedaling exercises caused physical workloads on the participants. Participant performance was unaffected by performing a workout while performing the assembly activity. Thus, administrations should encourage their employees to engage in short sessions of moderate-intensity exercise similar to the suggested exercise in the study to improve a person’s physical health during work without interfering with the effectiveness of work

    A New Model for Determining Factors Affecting Human Errors in Manual Assembly Processes Using Fuzzy Delphi and DEMATEL Methods

    No full text
    Human errors (HEs) are common problems in manual assembly processes, impacting product quality and resulting in additional costs. Based on expert judgments, this study aims to identify the most significant factors affecting HEs in manual assembly processes and explore the cause-and-effect relationships among those factors. In order to achieve this objective, a proposed model is constructed using two types of Multi-Criteria Decision-Making (MCDM) techniques. Firstly, using two rounds of the fuzzy Delphi method (FDM), twenty-seven factors with an influence score of 0.7 or higher were found to have a major impact on HEs during manual assembly processes, with at least a 75% consensus among experts. After that, the twenty-seven factors affecting HEs were given to experts in a third round to analyze the cause-and-effect relationships among those factors using the fuzzy decision-making trial and evaluation laboratory (DEMATEL) method. In MCDM techniques, symmetry refers to an important property that can be used to find relationships between variables. It is based on the principle that the relative importance or preference between two variables should remain the same regardless of their positions or roles. Therefore, symmetry is a factor that MCDM approaches take into account to ensure that the relationships between variables are accurately represented, leading to more reliable decision-making outcomes. The reliability and normality of the surveying data were examined using the SPSS 22.0 software program. The study results revealed that training level, poor workplace layout, a lack of necessary tools, and experience were the major factors affecting HEs as root causes. Moreover, a failure to address the error-causing problem, unintentional unsafe acts, fatigue, and poor error visual perception were found to be effect (dependent) factors. The findings of this study can help organizations make better-informed decisions on how to reduce worker errors and interest in the factors that contribute to assembly errors and provide a good basis for reaching the quality of final assembled parts

    Psychophysiological responses to manual lifting of unknown loads.

    No full text
    BackgroundThe handling of unknown weights, which is common in daily routines either at work or during leisure time, is suspected to be highly associated with the incidence of low back pain (LBP).ObjectivesTo investigate the effects of knowledge and magnitude of a load (to be lifted) on brain responses, autonomic nervous activity, and trapezius and erector spinae muscle activity.MethodsA randomized, within-subjects experiment involving manual lifting was conducted, wherein 10 participants lifted three different weights (1.1, 5, and 15 kg) under two conditions: either having or not having prior knowledge of the weight to be lifted.ResultsThe results revealed that the lifting of unknown weights caused increased average heart rate and percentage of maximum voluntary contraction (%MVC) but decreased average inter-beat interval, very-low-frequency power, low-frequency power, and low-frequency/high-frequency ratio. Regardless of the weight magnitude, lifting of unknown weights was associated with smaller theta activities in the power spectrum density (PSD) of the central region, smaller alpha activities in the PSD of the frontal region, and smaller beta activities in the PSDs of both the frontal and central regions. Moreover, smaller alpha and beta activities in the PSD of the parietal region were associated only with lifting of unknown lightweights.ConclusionsUncertainty regarding the weight to be lifted could be considered as a stress-adding variable that may increase the required physical demand to be sustained during manual lifting tasks. The findings of this study stress the importance of eliminating uncertainty associated with handling unknown weights, such as in the cases of handling patients and dispatching luggage. This can be achieved through preliminary self-sensing of the load to be lifted, or the cautious disclosure of the actual weight of manually lifted objects, for example, through clear labeling and/or a coding system
    corecore