13 research outputs found

    Understanding the individual to implement the ecosystem approach to fisheries management

    Get PDF
    Ecosystem-based approaches to fisheries management (EAFMs) have emerged as requisite for sustainable use of fisheries resources. At the same time, however, there is a growing recognition of the degree of variation among individuals within a population, as well as the ecological consequences of this variation. Managing resources at an ecosystem level calls on practitioners to consider evolutionary processes, and ample evidence from the realm of fisheries science indicates that anthropogenic disturbance can drive changes in predominant character traits (e.g. size at maturity). Eco-evolutionary theory suggests that human-induced trait change and the modification of selective regimens might contribute to ecosystem dynamics at a similar magnitude to species extirpation, extinction and ecological dysfunction. Given the dynamic interaction between fisheries and target species via harvest and subsequent ecosystem consequences, we argue that individual diversity in genetic, physiological and behavioural traits are important considerations under EAFMs. Here, we examine the role of individual variation in a number of contexts relevant to fisheries management, including the potential ecological effects of rapid trait change. Using select examples, we highlight the extent of phenotypic diversity of individuals, as well as the ecological constraints on such diversity. We conclude that individual phenotypic diversity is a complex phenomenon that needs to be considered in EAFMs, with the ultimate realization that maintaining or increasing individual trait diversity may afford not only species, but also entire ecosystems, with enhanced resilience to environmental perturbations. Put simply, individuals are the foundation from which population- and ecosystem-level traits emerge and are therefore of central importance for the ecosystem-based approaches to fisheries management

    Understanding the individual to implement the ecosystem approach to fisheries management

    Get PDF
    Ecosystem-based approaches to fisheries management (EAFMs) have emerged as requisite for sustainable use of fisheries resources. At the same time, however, there is a growing recognition of the degree of variation among individuals within a population, as well as the ecological consequences of this variation. Managing resources at an ecosystem level calls on practitioners to consider evolutionary processes, and ample evidence from the realm of fisheries science indicates that anthropogenic disturbance can drive changes in predominant character traits (e.g. size at maturity). Eco-evolutionary theory suggests that human-induced trait change and the modification of selective regimens might contribute to ecosystem dynamics at a similar magnitude to species extirpation, extinction and ecological dysfunction. Given the dynamic interaction between fisheries and target species via harvest and subsequent ecosystem consequences, we argue that individual diversity in genetic, physiological and behavioural traits are important considerations under EAFMs. Here, we examine the role of individual variation in a number of contexts relevant to fisheries management, including the potential ecological effects of rapid trait change. Using select examples, we highlight the extent of phenotypic diversity of individuals, as well as the ecological constraints on such diversity. We conclude that individual phenotypic diversity is a complex phenomenon that needs to be considered in EAFMs, with the ultimate realization that maintaining or increasing individual trait diversity may afford not only species, but also entire ecosystems, with enhanced resilience to environmental perturbations. Put simply, individuals are the foundation from which population- and ecosystem-level traits emerge and are therefore of central importance for the ecosystem-based approaches to fisheries management

    Parental care in a stressful world: Experimentally elevated cortisol and brood size manipulation influence nest success probability and nest-tending behavior in a wild teleost fish

    No full text
    Parental care is an advantageous reproductive behavior, as the fitness of the caregiver is increased through improving the chances of its offspring’s survival. Parental care occurs in a variety of teleost fishes. The body size of parental fish and the size of their brood can affect nest abandonment decisions, where compared with smaller fish with smaller broods, larger fish with larger broods typically invest more energy into reproductive events because they have less future reproductive potential. Although essential for basal metabolism and body maintenance functions, when glucocorticoid hormones (e.g., cortisol) are chronically elevated, as can occur during stress, fish may experience impairments in behavior and immune function, leading to compromised health and condition. Anthropogenic stressors during parental care can lead to elevated stress, therefore making it necessary to understand how stress influences an already-challenging period. Using smallmouth bass as a model, a gradient of body sizes, and experimentally manipulated brood size (i.e., reducing large broods and supplementing small broods) and cortisol levels (i.e., elevated via slow-release intraperitoneal cocoa butter implants containing cortisol versus controls), we tested the hypothesis that the reproductive success and parental care behaviors (i.e., aggression, nest tending) of nest-guarding male smallmouth bass are influenced by parental body size, brood size, and cortisol level. Overall, there was a relationship between cortisol treatment and nest success in which larger fish exhibited lower success when cortisol levels were elevated. Brood size had a significant effect on fish-tending behavior, independent of cortisol level and body size. Lending partial support to our hypothesis, the results of this study indicate that the reproductive success of guarding male smallmouth bass is influenced by cortisol level and that tending behavior is affected by brood size

    Consequences of Different Types of Littoral Zone Light Pollution on the Parental Care Behaviour of a Freshwater Teleost Fish

    No full text
    Ecological light pollution occurs when artificial lights disrupt the natural regimes of individual organisms or their ecosystems. Increasing development of shoreline habitats leads to increased light pollution (e.g., from cottages, docks, automobile traffic), which could impact the ecology of littoral zones of lakes and rivers. Smallmouth bass (Micropterus dolomieu) engage in sole paternal care, guarding their nest continually, day and night, to protect their developing offspring. Any alterations to their behaviour—either directly because of the response to light or indirectly due to changes in nest predator activity and associated response of the bass—could lead to increased energetic demands for fish that have a fixed energy budget and ultimately reduce reproductive success. To examine this issue, tri-axial accelerometer biologgers were externally attached to nesting smallmouth bass during the egg stage to determine whether light pollution (i.e., dock lights with low levels of continuous lig

    What are the consequences of fish entrainment and impingement associated with hydroelectric dams on fish productivity? A systematic review protocol

    Get PDF
    Abstract Background This systematic review will address the need for a better understanding of the impacts of fish entrainment and impingement associated with hydroelectric dams on fish productivity in freshwater temperate environments. As the number of dams continues to increase worldwide, so too has concerns for their effects on fish populations. Fish injury and mortality at hydroelectric facilities may have serious consequences for fish populations, which are generally the result of three main sources: (1) fish passage through hydroelectric facilities (i.e., turbines, spillways, sluiceways, and other passage routes) during downstream migration for migratory fish; (2) the entrainment of resident fish; and (3) the impingement of fish (migratory or resident) against screens/trash racks. Most studies on the impacts of entrainment and impingement at hydroelectric facilities on fish have primarily focused on: (1) how fish injury and mortality occurs; and (2) evaluations of the effectiveness of various management strategies used to mitigate harm during downstream passage. Given the contributions of migratory and resident adults and juveniles to fish production, a necessary extension is to evaluate the impacts of fish injury and mortality from hydropower dam entrainment and impingement on fish productivity. Therefore, to ensure the sustainability of fishes dependent on our freshwater ecosystems, a better understanding of the impacts of fish entrainment and impingement associated with hydroelectric dams on fish productivity is needed. Methods This systematic review will search for, compile, summarize and synthesize evidence on the impacts of fish entrainment and impingement associated with hydroelectric dams on fish productivity in freshwater temperate environments. Considered studies will include (but not be limited to): (1) those that report a metric related to mortality and injury as an indication of the effect on fish productivity; (2) the change in a metric related to mortality and injury relative to an appropriate control; and (3) articles that scale-up the evaluation to include some estimate of a change in a component of fish productivity (e.g., articles that include an estimate of fish loss from the population due to entrainment/impingement by comparing a metric related to mortality or injury to an estimate of population size or biomass). Only studies where the causal relationship between intervention and outcome is made clear to allow for the effects of entrainment and impingement to be isolated from other potential impacts of hydroelectric power production (e.g., barriers to migration and/or habitat degradation), will be included. The review will use public search engines and specialist websites, and will include both primary and grey literature. Potential effect modifiers will be identified to obtain a better understanding of the factors that are associated with variation in effects among studies, given differences in: (1) site-specific factors (e.g., turbine type, size, power output); (2) methodologies and study designs used to assess impacts; and (3) biological factors (e.g., fish life history stage, body size and morphology). Study quality will be assessed to allow for critical evaluation, including study design, confounding factors and statistical analysis. Data will be compiled into a narrative synthesis and a meta-analysis will be conducted where data availability and quality allow

    Are 3 minutes good enough for obtaining baseline physiological samples from teleost fish?

    No full text
    A prerequisite to studying the physiological status of wild animals is the ability to obtain blood samples that reflect the condition prior to capture or handling. Based on research in avian taxa, it is recommended that such samples be obtained within 3 min of capture; however, this guideline has not been validated in wild teleosts. The present study addresses the time course of physiological changes in a number of blood metrics across six species of freshwater fish. Fishes were caught using a standardized angling protocol and held in a water-filled trough prior to the collection of a blood sample, via caudal phlebotomy, between 0.5 and 11 min after capture. Changes in whole-blood glucose and lactate concentrations, hematocrit, and plasma cortisol concentrations were assessed. Change-point analyses indicated that blood lactate concentrations and hematocrit did not deviate from baseline values until similar to 2-5 min of handling for all species, whereas blood glucose concentrations generally did not deviate significantly from baseline over the 11 min test period. In all species, plasma cortisol concentrations began to increase above baseline between similar to 4 and 8 min after capture. Thus, to ensure that blood samples are representative of baseline conditions across multiple metrics, we recommend that sampling be limited to less than 2 min in teleost fishes

    What are the relative risks of mortality and injury for fish during downstream passage at hydroelectric dams in temperate regions? A systematic review

    No full text
    Abstract Background Fish injury and mortality resulting from entrainment and/or impingement during downstream passage over/through hydropower infrastructure has the potential to cause negative effects on fish populations. The primary goal of this systematic review was to address two research questions: (1) What are the consequences of hydroelectric dam fish entrainment and impingement on freshwater fish productivity in temperate regions?; (2) To what extent do various factors like site type, intervention type, and life history characteristics influence the consequences of fish entrainment and impingement? Methods The review was conducted using guidelines provided by the Collaboration for Environmental Evidence and examined commercially published and grey literature. All articles found using a systematic search were screened using a priori eligibility criteria at two stages (title and abstract, and full-text, respectively), with consistency checks being performed at each stage. The validity of studies was appraised and data were extracted using tools explicitly designed for this review. A narrative synthesis encompassed all relevant studies and a quantitative synthesis (meta-analysis) was conducted where appropriate. Review findings A total of 264 studies from 87 articles were included for critical appraisal and narrative synthesis. Studies were primarily conducted in the United States (93%) on genera in the Salmonidae family (86%). The evidence base did not allow for an evaluation of the consequences of entrainment/impingement on fish productivity per se; therefore, we evaluated the risk of freshwater fish injury and mortality owing to downstream passage through common hydropower infrastructure. Our quantitative synthesis suggested an overall increased risk of injury and immediate mortality from passage through/over hydropower infrastructure. Injury and immediate mortality risk varied among infrastructure types. Bypasses resulted in decreased injury risk relative to controls, whereas turbines and spillways were associated with the highest injury risks relative to controls. Within turbine studies, those conducted in a lab setting were associated with higher injury risk than field-based studies, and studies with longer assessment time periods (≥ 24–48 h) were associated with higher risk than shorter duration assessment periods (< 24 h). Turbines and sluiceways were associated with the highest immediate mortality risk relative to controls. Within turbine studies, lab-based studies had higher mortality risk ratios than field-based studies. Within field studies, Francis turbines resulted in a higher immediate mortality risk than Kaplan turbines relative to controls, and wild sourced fish had a higher immediate mortality risk than hatchery sourced fish in Kaplan turbines. No other associations between effect size and moderators were identified. Taxonomic analyses revealed a significant increased injury and immediate mortality risk relative to controls for genera Alosa (river herring) and Oncorhynchus (Pacific salmonids), and delayed mortality risk for Anguilla (freshwater eels). Conclusions Our synthesis suggests that hydropower infrastructure in temperate regions increased the overall risk of freshwater fish injury and immediate mortality relative to controls. The evidence base confirmed that turbines and spillways increase the risk of injury and/or mortality for downstream passing fish compared to controls. Differences in lab- and field-based studies were evident, highlighting the need for further studies to understand the sources of variation among lab- and field-based studies. We were unable to examine delayed mortality, likely due to the lack of consistency in monitoring for post-passage delayed injury and mortality. Our synthesis suggests that bypasses are the most “fish friendly” passage option in terms of reducing fish injury and mortality. To address knowledge gaps, studies are needed that focus on systems outside of North America, on non-salmonid or non-sportfish target species, and on population-level consequences of fish entrainment/impingement

    Turbine entrainment and passage of potadromous fish through hydropower dams: Developing conceptual frameworks and metrics for moving beyond turbine passage mortality

    No full text
    Potadromous fishes are vulnerable to involuntary entrainment through hydropower turbines. However, turbines can also provide a downstream passage route for potadromous fish. Here, we review evidence for turbine entrainment and passage in potadromous fish, and evaluate the effects of these processes on upstream and downstream populations. We develop conceptual frameworks and metrics to quantify vulnerability to turbine entrainment removals, and to quantify the efficiency of turbines as a downstream passage route. We highlight factors that influence these processes and provide case-studies demonstrating their applicability. We found that juvenile potadromous fi

    Twenty actions for a “good Anthropocene”—perspectives from early-career conservation professionals

    No full text
    Humans are now recognized as the main drivers of environmental change, leaving the future of our planet dependent on human action or inaction. Although the outlook of our planet is often depicted in a “doom and gloom” manner due to recent troubling environmental trends, we suggest that a “good Anthropocene” (in which human quality of life may be maintained or improved without cost to the environment) is attainable if we engage in adaptive, multi-disciplinary actions capable of addressing the socio-ecological issues of today and tomorrow. Early-career conservation scientists and practitioners have an unmatched understanding of novel technologies and social connectivity and, as those left with the ever-growing responsibility to be the problem solvers of the attributed increasing environmental consequences of living in the Anthropocene, their perspectives on steps towards a good Anthropocene are valuable. Here we present a list of 20 actions derived by early-career conservation scientists and practitioners for conservationists to help achieve a good Anthropocene that utilize the social connectivity and technology of today. Central to these actions are the notions that multi-, inter-, and trans-disciplinary collaboratives that embrace diverse world views need to be integrated into decision-making processes; training and outreach platforms need to communicate both environmental challenges and solutions broadly; and conservation successes need to be acknowledged and disseminated in a forward-looking, adaptive capacity. Together the 20 actions identified here reinforce the underlying paradigm shift that must accompany living in the Anthropocene, given that biodiversity and healthy ecosystems are requisite for sustained human life. By sharing this list of actions, we look to promote positive socio-environmental changes towards the collective goal of achieving a good Anthropocene.The accepted manuscript in pdf format is listed with the files at the bottom of this page. The presentation of the authors' names and (or) special characters in the title of the manuscript may differ slightly between what is listed on this page and what is listed in the pdf file of the accepted manuscript; that in the pdf file of the accepted manuscript is what was submitted by the author
    corecore