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Ecosystem-based approaches to fisheries management (EAFMs) have emerged as requisite for sustainable use of fisheries 
resources. At the same time, however, there is a growing recognition of the degree of variation among individuals within a 
population, as well as the ecological consequences of this variation. Managing resources at an ecosystem level calls on practi-
tioners to consider evolutionary processes, and ample evidence from the realm of fisheries science indicates that anthropo-
genic disturbance can drive changes in predominant character traits (e.g. size at maturity). Eco-evolutionary theory suggests 
that human-induced trait change and the modification of selective regimens might contribute to ecosystem dynamics at a 
similar magnitude to species extirpation, extinction and ecological dysfunction. Given the dynamic interaction between fish-
eries and target species via harvest and subsequent ecosystem consequences, we argue that individual diversity in genetic, 
physiological and behavioural traits are important considerations under EAFMs. Here, we examine the role of individual varia-
tion in a number of contexts relevant to fisheries management, including the potential ecological effects of rapid trait change. 
Using select examples, we highlight the extent of phenotypic diversity of individuals, as well as the ecological constraints on 
such diversity. We conclude that individual phenotypic diversity is a complex phenomenon that needs to be considered in 
EAFMs, with the ultimate realization that maintaining or increasing individual trait diversity may afford not only species, but 
also entire ecosystems, with enhanced resilience to environmental perturbations. Put simply, individuals are the foundation 
from which population- and ecosystem-level traits emerge and are therefore of central importance for the ecosystem-based 
approaches to fisheries management.
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Introduction
Nearly every biology textbook begins with a reductionist over-
view of biological hierarchies, emphasizing the long-standing 
and axiomatic nature of this concept (Simon, 1962). Molecules, 
genes, cells, tissues and organs collectively form individuals, an 
association often referred to as biological organization 
(Dobzhansky, 1964). In turn, individuals form the basis of 
populations, communities and ecosystems, referred to as eco-
logical organization (Peterson, 2000). Scientists often concen-
trate on one or several levels within the complex biological 
hierarchy in an attempt to provide focus and yield tractable 
questions (Valentine and May, 1996). This does not mean that 
what happens at one level is not important to another, as emer-
gent properties at one level may be manifested collectively at a 
higher level (Korn, 2005). Theoretically, one could link ecosys-
tem changes back to processes that occur at the level of the 
molecule or gene or vice versa, although such scaling is not 
straightforward (Cooke et al., 2014a) and requires complex 
models and assumptions about mechanistic processes and 
links across hierarchical levels (Nisbet et al., 2000; Benfey and 
Mitchell-Olds, 2008; Forbes et al., 2008).

For those who work within the realm of natural resource 
management and conservation, it is apparent that environ-
mental or ecological problems often cascade across multiple 
levels of biological and ecological organization. For example, 
various environmental factors (see the Fry paradigm; Fry, 
1947) influence cellular processes and organ function and col-
lectively influence individual fitness (Calow, 1989). Individual 
responses to environmental variation are limited by physical, 
physiological and phylogenetic mechanisms (Fry, 1947; 
Ricklefs and Wikelski, 2002). Individual fitness then drives 
population-level processes (Calow and Forbes, 1998; Maltby, 
1999; Ricklefs and Wikelski, 2002), which can influence eco-
system structure and function (Helmuth, 2009). In this con-
text, individual physiological abilities and tolerances are the 
transfer functions that directly link organisms and, eventually, 
populations to their environment (Fry, 1971; Weissburg and 
Browman, 2005; Jusup et al., 2011; Horodysky et al., 2015).

In many natural systems, the effects of anthropogenic and 
natural stressors on ecosystem interactions are becoming 
increasingly apparent (e.g. Crain et al., 2008). Consequently, 
resource management strategies are moving towards holistic 
approaches encompassing a broad array of ecosystem vari-
ables (Brunner and Clark, 1997). This is particularly salient in 
the fisheries management realm, where regulatory bodies have 
embraced the concept of an ecosystem approach to fisheries 
management (EAFM), albeit with varying degrees of commit-
ment and application (Arkema et  al., 2006; Pitcher et  al., 
2009; Patrick and Link, 2015; Skern-Mauritzen et al., 2015). 
Although discrepancies in terminology exist and objectives 
vary widely (Yaffee 1999; Garcia et al., 2003; Arkema et al., 
2006), in this article we adopt a general characterization of 
EAFM sensu Hilborn (2011) as a set of contemporary man-
agement strategies made at the level of the fish stock (e.g. 
bycatch mitigation and habitat modification) which incorporate 

emerging tools providing an ecosystem context to those 
actions (e.g. predator–prey interactions and physical oceano-
graphic modelling). We limit our scope to conventional man-
agement jurisdictions and do not presume to address all 
anthropogenic impacts within the broader realm of ecosys-
tem-based management (e.g. terrestrial land-use policies); 
however, the consequences of such extrinsic factors for fisher-
ies management bear similar deliberation. The premise of our 
arguments centres on the tenet that EAFM aims to maintain 
the natural ecological function and evolutionary stability of a 
particular population, to accommodate sustainable fisheries 
(Pikitch et al., 2004).

At the same time that the EAFM gains traction with natu-
ral resource agencies and resource managers (Brunner and 
Clark, 1997; Garcia and Cochrane, 2005; Patrick and Link, 
2015), there is a growing recognition that individual trait 
diversity is a pervasive form of population-level variation with 
ecological implications (Spicer and Gaston 1999; Bolnick 
et al., 2003). In particular, inter-individual diversity in physiol-
ogy and behaviour may affect the persistence and resilience of 
a population to disturbances such as fishing pressure, habitat 
loss and alteration, changes in prey base, and climate-driven 
warming and ocean acidification. Phenotypic diversity is also 
relevant to ecosystem interactions (e.g. predator–prey rela-
tionships, trophic cascades, sexual selection and habitat selec-
tion; Miner et al., 2005; Wellenreuther et al., 2014) and plays 
a mediating role in the genetic consequences of managing 
populations (e.g. gear selectivity, and fisheries-induced evolu-
tion; Kuparinen and Merilä, 2007). As holistic management 
frameworks continue to be adopted, it is important for man-
agers and researchers to consider the effects of human activity 
on fishes at an individual level and attempt to reconcile the 
challenges of scaling information and concepts from individu-
als to ecosystem (Helmuth 2009; Cooke et  al., 2014a). 
Emerging tools of conservation physiology and conservation 
behaviour enable the monitoring and evaluation of interpopu-
lation variance and may provide a basis for informing future 
management practices (Cooke et al., 2014b).

Holistic approaches to fisheries management are increas-
ingly becoming the norm (Curtin and Prellezo, 2010), although 
in practice a number of challenges remain (Meyer and Swank, 
1996; Brunner and Clark, 1997; Schindler and Hilborn, 2015; 
but see Patrick and Link, 2015). It has long been acknowl-
edged that extensive variation exists among populations [see 
Prosser (1955) and the Beverton-era work on life-history vari-
ation across fish populations]. Such variability has been 
embraced by fisheries management agencies as embodied by 
the ‘stock’ concept (Berst and Simon, 1981) and evolutionarily 
significant management units (Allendorf, 1995). For many of 
the most commercially valuable species or those of conserva-
tion concern, such as Pacific salmon (Oncorhynchus spp.), 
Atlantic cod (Gadus morhua) or bluefin tuna (Thunnus thyn-
nus), fisheries management has defined biologically discrete 
stocks, which are separate entities when it comes to monitor-
ing, setting quotas, harvesting and reporting catches. While 
accounting for demographic shifts at the population and 
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 sub-population levels (e.g. size–frequency distribution) is the 
classic method of fisheries monitoring, ecologically significant 
sources of variation occur within a population (e.g. standing 
rates of trait variation). The phenotypic variance within a pop-
ulation can be achieved through different modes (i.e. the port-
folio effect; Bolnick et al., 2011), with the potential for artificial 
(harvest) selection to act upon discrete traits, thus driving local 
shifts in phenotype abundance or performance (Fig.  1; 
Schindler et al., 2010).

Failing to account for inter-individual variation within stocks 
can place management objectives at risk. The individual is an 
observational unit of value for resource managers and may be 
particularly informative when the objective is to understand 
ecosystem-scale processes (Nisbet et al., 2000; Cooke et al., 
2014b). Here, we contend that not only population-level but 
also individual variation is one of the benchmarks against which 
EAFM actions should be based. We call on resource managers to 
consider incorporating the growing body of knowledge pertain-
ing to individual diversity within populations, which can 
enhance EAFM by providing greater insights into the cryptic 
and sub-lethal effects of human activity and environmental 
change. We provide examples of how individual trait diversity is 
a crucial component of ecosystem processes, structure and func-
tion and, hence, EAFM. We conclude with recommendations on 
the use of individual-level information in ecosystem approaches 
and identify areas of need moving forward.

Although sexual differences within a species often relate to 
ecologically relevant parameters, such as life history, behav-
iour and physiology, we limit our exploration of sex-based 
differences because these have already received attention else-
where (Rowe and Hutchings, 2003; Hanson et al., 2008).

Individual trait diversity in fishes
Life history
There is a longstanding recognition within fisheries science, 
pioneered by the work of Ray Beverton, that the array of life-
history traits across many commercial fish stocks can be 
dynamic (Beverton and Holt, 1959; reviewed by Shuter and 
Abrams, 2005). The causes and consequences of such varia-
tion have received considerable attention in the intervening 
decades, with the consensus that anthropogenic environmen-
tal change, including harvest pressure, can induce shifts in life-
history traits within fish populations (Conover et al., 2005; 
Kuparinen and Merilä, 2007; Palkovacs et al., 2012). Diversity 
in life-history traits within a population is an important con-
sideration for EAFM, because it connects multiple facets of 
inter-individual diversity (Fig. 2), including ontogenetic pro-
cesses, such as growth rate, size at maturity and natural mor-
tality, in addition to phenological patterns related to sex 
determination, migration timing and reproductive strategies 
(Pukk et al., 2013). The dynamics of a population are influ-
enced by the diversity its phenotypes, as shaped by genetic and 
environmental factors, and maintenance of this variation pro-
vides resilience and adaptability to changing environments 
(Ricklefs and Wikelski, 2002; Winemiller, 2005). It is worth 
noting that life-history traits can be viewed as emergent prop-
erties of the evolutionary and environmental forces governing 
individual development and performance (Roff, 2002) and 
that these same processes are implicated in virtually all exam-
ples of trait variation. As suites of traits are often correlated 
(Young et al., 2006; Conrad et al., 2011), a particular life-
history trait often has associated physiological and behav-
ioural characteristics, a concept that is revisited in the 
following sections and is of crucial importance for manage-
ment decisions (Box 1).

Typically, life-history traits are regarded as a property of 
populations, with acknowledgement of some variance among 
individuals through space and time. There is, however, 
increasing recognition of the degree of standing diversity 
within a population (Ricklefs and Wikelski, 2002; Bolnick 
et al., 2011; Modlmeier et al., 2014). For example, variation 
in the timing of important ontogenic events, such as matura-
tion and reproduction, has been noted within and across 
populations (Réale et al., 2010), with consequences for vul-
nerability to decline from harvest (Juan-Jordá et al., 2015). 
Aside from direct harvest, indirect anthropogenic habitat 
alteration has also been found to influence life-history diver-
sity in fish populations (Giery and Layman, 2015; Riesch 
et  al., 2015). Thus, while life-history dynamics can be 
observed at the population level, shifts in phenotypic diver-
sity are manifested at the individual level and can occur in 
short time scales.

Body size
Morphological characteristics provide an accessible basis for 
evaluating among-individual variation and have a long  history 
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Figure 1: Conceptual depiction of trait diversity within a community, 
noting that the mean value (performance or optima) of a trait 
(continuous lines) measured at the population level can be composed 
of an array of constituent phenotypes at the individual level, the 
performance of which can vary across individuals through space and 
time (i.e. the portfolio effect). Both natural and artificial selection 
(whether direct or indirect) influence the performance of individual-
level traits, which may result in cascading effects upwards through the 
ecological hierarchy (dashed lines).
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of use in fisheries management. The body size of a fish is a 
function of sex, life-history traits, ontogeny, energetics and 
genetics (Stearns, 1983; Winemiller and Rose, 1992) and 
relates to a variety of physiological and behavioural traits, in 
interaction with the abiotic and biotic environment. Mean 
body size, as well as mean size at maturation, are central 

parameters in fisheries management frameworks, often 
employed for stock assessments in data-deficient applications 
(Andersen and Beyer, 2013). In many instances, however, vari-
ation of these traits exists within a population, providing an 
ecologically relevant source of data for individual variation 
within a population.
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Figure 2: Conceptual depiction of the interaction between fisheries management (blue circle) and ecosystem processes (adapted from Ricklefs 
and Wikelski, 2002). Individual attributes and variation therein (grey circle) give rise to a phenotype for which performance (green circle) is 
influenced by ecosystem interactions (orange boxes). Feedbacks between environmental factors (yellow boxes) are mediated by ecosystem 
alterations and demographic change (continuous and dotted lines).
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Perhaps the greatest influence of the body size of an indi-
vidual on physiological variables relates to energetics. Given 
that an organism must acquire resources and partition 
available energy among demands for maintenance, activity, 
growth and reproductive maturation, body size and meta-
bolic processes can impose a constraint on fitness (Barton, 
2002). Metabolic rates scale with mass and temperature 
(Heusner, 1982), providing two sources of size-based indi-
vidual variation. Larger fishes benefit from negative allome-
tric relationships, because they expend proportionally less 
energy for vital functions compared with smaller fishes 
(Heusner, 1982). Likewise, differences in swimming effi-
ciency correspond to body size, where larger fishes incur 
lower mass-specific energetic costs (Schmidt-Nielsen, 1972). 
However, a number of studies have shown intraspecific 
deviation from the universal scaling exponent (b = 0.75; 
Heusner, 1982), with several examples found in fishes 
(Bokma 2004; Glazier, 2005; Killen et  al. 2007, 2010; 
Burton et al. 2011). Importantly, larger individuals typically 
have energetic and ecological advantages that increase 
fecundity and, in some cases, investment of reproductive 
energy (Birkeland and Dayton, 2005). In some species, off-
spring of larger individuals also exhibit improved fitness 
characteristics, with examples including more rapid matura-
tion, decreased sensitivity to food deprivation (Berkeley 
et al., 2004), and avoiding size-dependent predation. Recent 
stock recruitment models have found, using asymptotic 
growth rate and assuming increased offspring success for 
larger individuals, that fisheries reference points are not 
likely to be impacted significantly for most stocks (Andersen 
and Beyer, 2013). Notably, however, these characteristics 
are likely to be more significant for longer-lived, slower-
maturing species, many of which constitute vulnerable fish-
eries, highlighting the differential response of traits across 
species.

The size of an individual also gives rise to many individ-
ual-level behavioural differences in fishes. In social species, 
 variation in body size can influence hierarchical structures; 
larger fish are typically dominant in competition for 
resources and mates (Bisazza et al., 1996; Yue et al., 2006; 
Kohda et al., 2008), often conferring increased foraging 
and reproduction but subject to trade-offs with survival 
(Enberg et al., 2012). Schooling behaviours in fish can be 
determined in part by body size (Jacob et al., 2007); it has 
been documented that herring (Clupea harengus) and 
mackerel (Scomber scombrus) sort according to size, with 
individuals choosing neighbours of similar size (Pitcher 
et al., 1985). Variation in body size also influences preda-
tor–prey dynamics; it is energetically advantageous to have 
a larger body size as a predator, in order to consume 
smaller prey more efficiently, whereas prey with a larger 
body size can avoid gape-limited predators (Cohen et al., 
1993). A study on three-spined stickleback (Gasterosteus 
aculeatus) found, however, that when not gape limited, 
predators tended to select larger prey items (Gill and Hart, 
1996).

Physiological capacity, tolerances and 
performance
It has been suggested that physiology acts as a filter or transfer 
function between the environment and fitness (Ricklefs and 
Wikelski, 2002; Horodysky et al., 2015), wherein an individ-
ual’s tolerance and response to external stressors are often 
indicative of a population’s long-term persistence and distri-
bution (Fry, 1947; Chown, 2012; Seebacher and Franklin, 
2012; Cooke et al., 2013). Although fitness of the individual 
is the ultimate consequence, environmental impacts may be 
mediated at lower cellular levels and can even be tissue spe-
cific (Johnson and Tricker, 2010). By examining energy flow 
between organisms and their environment, in addition to 
mechanistic alterations at genetic and biochemical levels, 
physiological systems provide insight into variation among 
individuals’ responses to their environments (Carey, 2005). 
One striking example of this is the diversity of endocrine 
activity among individuals, and how individual responses to 
environmental challenges vary, including variability in hor-
mone production, receptor activity and signalling pathways 
(Williams, 2008), as well as changes to gene expression 
(Richards et al., 2010). In response to environmental stressors, 
the regulation of these endocrine systems may stimulate stress 
responses or inhibit reproduction by targeting the stress axis 
or hypothalamic–pituitary–gonadal axis, respectively (Barton, 
2002; Romero, 2004). Physiology can, therefore, be used as a 
tool to assess the degree of stress exerted on individuals by 
their environments and the resulting consequences for repro-
ductive potential (Wikelski and Cooke, 2006).

Investigations of physiological performance have high-
lighted the degree of inter-individual variability in fishes. In 
particular, bioenergetic analyses of aerobic scope for activity, 
swimming performance and associated metabolic processes 
have provided insights into the causes and consequences of 
variation within populations (Kolok and Farrell, 1994; 
Oufiero and Garland, 2009; Marras et al., 2010). Variations 
in metabolic scope and routine metabolic rates may also influ-
ence ecologically significant behaviours (Burton et al., 2011), 
such as risk taking to secure resources (Killen et al., 2011), 
positioning within schools (Killen et al. 2012a) and domi-
nance (Reid et al., 2012; Killen, 2014). Likewise, metabolic 
demand (for compensatory growth) has been found to influ-
ence routine metabolic rate, thermal preference and activity, 
illustrating the relationship between physiology and behav-
iour (Killen, 2014).

Variation in individual tolerance to environmental param-
eters, such as temperature, hypoxia, ammonia, salinity, pH 
and CO2, has also been documented (Munday et al., 2009a,b; 
Killen et al. 2012b) and, through differential mortality, may 
also present a selective filter, impacting ecological and evolu-
tionary processes (Munday et al., 2012). Genetic heritability 
of physiological traits, and thus evolutionary potential in the 
face of changing environments, has also been documented. 
For example, thermal tolerance of offspring from the same 
female but different males (sires) can differ (Politis et  al., 
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2014). In a second example, cardiac performance and thermal 
tolerance are positively related within individuals but highly 
variable between families of Atlantic salmon (S. salar; Anttila 
et al., 2013). There is also evidence to suggest that sexual 
dimorphism in physiological traits exists, including variable 
stress responses between sexes of many sharks (Elasmobranch 
spp.), males having consistently higher levels of circulating 
corticosteroids than females (Anderson, 2012), and similar 
results have been reported in rainbow trout (Oncorhynchus 
mykiss; Pottinger et al. 1995; Pottinger and Carrick 1999). 
Rainbow trout also exhibit differences in cardiac metabolism 
between sexes, with females having a higher tolerance to 
hypoxia, whereas males have a greater capacity for aerobic 
and lipid metabolism (Battiprolu et  al., 2007). Among-
individual variation in energetic performance and environ-
mental tolerances may form the basis for spatiotemporal 
variability in habitat selection via behavioural thermoregula-
tion (Huey, 1991; Horodysky et al., 2015).

The relationship between environmental conditions, indi-
vidual size and metabolism has given rise to the metabolic 
theory of ecology (Brown et al., 2004) and the dynamic energy 
budget theory (Nisbet et al., 2000). Dynamic energy budgets 
attempt to reconcile changes in fish growth (and reproductive 
allocation) with environmental changes through time and 
space. Generally, these models consider both abiotic factors 
(e.g. temperature) and biotic factors (e.g. food availability) 
and are thus regionally specific and species specific, with nota-
ble differences among and within species (Freitas et al., 2010). 
Both models are now being used to explore ecosystem-scale 
relationships, using community data (Barneche et al., 2014) 
and in conjunction with individual-based models (Beaudouin 
et al., 2015).

Behaviour
There exists a wide range of behavioural diversity in fishes 
that should be given consideration for fisheries management. 
When these differences in individual behaviour are consistent 
and repeatable, they are variously referred to as ‘animal per-
sonality’, ‘behavioural types’ or ‘behavioural syndromes’ and 
have been observed in many taxa, including fishes (Sih et al., 
2004; Dingemanse et al., 2010; Conrad et al., 2011). The 
behavioural variation can be a function of life-history stage 
and may often correlate with a suite of physiological vari-
ables which, together, contribute to an individual’s relative 
fitness (Buchholz, 2007; Cooke et al., 2013) or life-history 
strategy (Réale et al., 2010). Behavioural studies on fishes 
have been prominent in our understanding of the bold–shy 
continuum (Sih et al., 2004; Conrad et al., 2011). For exam-
ple, migrant and resident individuals can exist in sympatric 
populations leading to partial migrations and, in some 
instances, the probability of migration has been directly 
linked to the boldness of individuals, as seen in freshwater 
roach (Rutilus rutilus; Chapman et al., 2011a). In addition, 
bolder individuals are typically more likely to engage in other 
risk-taking behaviours (Sih et  al., 2004; Chapman et  al., 
2011b). For example, elevated activity may improve foraging 

opportunity, but it may also increase predation risk (Lima 
and Dill, 1990; Cote et al., 2010). This phenomenon has been 
linked to harvest vulnerability; Biro and Post (2008) reported 
that, independent of body size, bold, fast-growing rainbow 
trout were more vulnerable to a simulated commercial fishery 
than shy, slow-growing individuals.

Consistent behavioural variations may be linked proxi-
mally by physiological requirements and sensitivities and, ulti-
mately, by environmental factors, such as predator or prey 
densities, and stress responses (Dall et al., 2012; Killen et al., 
2013). In addition, available evidence also suggests that indi-
viduals within a species can show intrinsic behavioural diver-
sity that can help to generate variations in body size and 
physiology in complex cause-and-effect feedbacks (Biro and 
Stamps, 2008, and references therein). This view is also sup-
ported by a theoretical model for the evolution of information 
use during decision-making in fish, where consistent behav-
ioural types emerged as a result of ontogeny, sex and 
 frequency-dependent pay-offs, and with consequences for 
growth, size and survival (Giske et al., 2014).

There is also evidence to suggest that large pelagic sharks 
are prone to state-dependent constraints on migratory behav-
iour and movements related to reproduction. Evaluating large 
tiger shark energetics at a seasonal aggregation site, Gallagher 
et al. (2014) found a positive relationship between body con-
dition and triglycerides, a source of energy to fuel challenging 
life-history phases. The authors found a high degree of indi-
vidual variation in both measures and hypothesized that the 
low number of individuals exhibiting strong condition and 
high energy stores in space and time were disproportionately 
important to stock health. Individual differences also influ-
ence vulnerability to exploitation, as seen in trophy sport fish-
eries, where the largest and most fecund individuals are 
targeted. Using the shark example above, the same individuals 
that hold increased conservation value also experience dispro-
portionate harvest pressure, leading to problems when the 
species in question is threatened (Shiffman et al. 2014).

Synthesis: integrating individuals 
into ecosystem-based approaches to 
fisheries management
Role of individuals in eco-evolutionary 
processes
Through experiencing and responding to their environment, 
individuals are the substrate upon which natural selection 
operates, acting as the interface between the population or spe-
cies’ gene pool and the environment. Variation among indi-
viduals’ responses to environmental parameters is therefore a 
critical link that drives ecosystem dynamics (Fig. 2; Spicer and 
Gaston, 1999: Ricklefs and Wikelski, 2002). The ecological 
literature is replete with examples of individual diversity 
(reviewed by Bolnick et al., 2003), and study of the ecological 
relevance of this diversity (Van Valen, 1965) arose in parallel 
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Box 1: Management implications of individual trait diversity

Human activity has the capacity to influence the phenotypic diversity of wild animal populations (Wennersten and 
Forsman, 2012), with knock-on consequences for ecosystem function (Palkovacs et al., 2012). Here, we present examples 
of how anthropogenic activity related to fisheries can both directly and indirectly influence individual trait diversity, the 
associated impact of this change on ecosystem processes, and the implications for management decisions. The examples 
selected represent a breadth of management scales, including practices that are directly related to an ecosystem approach 
to fisheries management (EAFM) policy, initiatives approached from an ecosystem-based management perspective, and 
broad-scale human-induced environmental change. From these examples, a common theme appears to emerge, whereby 
anthropogenic shifts in trait diversity in a population need to be monitored under an EAFM.

Size-selective harvest

In many fisheries, large (typically older) and subsequently higher-value individuals are preferentially removed from a 
population, although quotas and various size-based limits are often in place to promote sustainable harvest (Hutchings, 
2009). Beyond the well-known population-level changes associated with removal of large, mature individuals, such as 
reductions in mean size at maturity and age at maturity, concomitant reductions in fecundity, and elevated natural mortal-
ity levels (Swain, 2011; Enberg et al., 2012), the effects of these trait shifts on ecosystem function are significantly less 
understood. Alteration of ontogenic regimens, or the ‘pace of life’ of a population, has been related to stock vulnerability 
to harvest (Juan-Jordá et al., 2015) and is likely to influence community tropho-dynamics (Réale et al., 2010). Furthermore, 
behavioural changes associated with life-history shifts are possible, such as changes to feeding strategy (Audzijonyte et al., 
2013), social structure, habitat use or the timing and duration of migrations. Recent evidence of stock rebuilding in north 
Atlantic cod (Rose and Rowe, 2015) highlights the importance of state-dependent behavioural expression, particularly as 
it relates to our ability to monitor wild populations. In this case, renewed detections of cod spawning aggregations in the 
Bonavista Corridor followed an increase in the condition of reproductive age-class individuals at inshore feeding areas, 
suggesting that off-shore reproductive migrations may be condition- or density-dependent behaviours (Enberg et al., 2009). 
Management practices that do not account for life-history changes will be likely to overestimate long-term yields; it is 
therefore prudent that population demographic monitoring (a central component of stock assessment under EAFM) con-
tributes to an understanding of a population’s phenotypic ‘portfolio’ (Schindler et al., 2010; Carlson et al., 2011; Kershner 
et al., 2011). Although the consequences of trait change will vary by species, monitoring how specific traits (especially those 
relating to body size) respond to selective regimens and environmental change will be instrumental in advancing our ability 
to manage at an ecosystem scale.

Marine protected areas

The designation of no-take marine protected areas (MPAs) may result in alterations to the phenotypic diversity and spa-
tial structure of a population. A widely noted ‘spillover effect’ (Sale et al., 2005), resulting in increased species diversity 
beyond the designated boundaries of the MPA, implies a strengthening of individual abundance and diversity; however, 
the effects on individual behaviour within and outside of MPAs are less understood. Two potential effects are the increased 
‘catchability’ of gear-naïve fish near the boundaries of MPAs (Alós et al., 2015) and the selection against long-distance 
dispersers within a population (Di Franco et al., 2012). Although MPAs may protect a buffer population that can con-
tribute to population recruitment outside its boundaries (i.e. the ‘rescue effect’), selective removal or differential perfor-
mance of migrants may alter the phenotypic subsidy of the sink population (Burgess and Marshall, 2011). It is therefore 
pertinent that a population’s diversity in space use be accounted for in spatially explicit management strategies. Protecting 
those areas outside of MPAs that provide metapopulation connectivity and facilitate gene flow has been recognized as 
crucial to MPA efficacy and performance (Di Franco et al., 2012; Wright et al., 2015). This may be particularly salient for 
supporting the transfer and maintenance of transient phenotypes, such as exploratory individuals or super dispersers 
(Cote et al., 2010; Marshall et al., 2010), and is necessary to facilitate the above-mentioned ‘rescue effect’ conferred by 
MPAs. Further monitoring of trait diversity and the environmental constraints of migratory behaviours (i.e. density or 
state dependence) is recommended to understand the effect of MPA designation for stocks under EAFM.

Climate change

Human-induced climate change continues to alter physical environmental conditions on regional scales (IPCC, 2014), rap-
idly changing animal phenology and selective regimens (Carroll et al., 2007) and presenting an important consideration for 
EAFM. Among the frequently noted impacts of a changing climate are rising sea surface temperatures and ocean
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with life-history examinations in the context of fisheries 
(Beverton and Holt, 1959). A renewal of interest in the eco-
logical consequences of individual-level variation (including 
behavioural and physiological aspects) has been manifested by 
the formation of new theoretical frameworks within evolu-
tionary ecology (Schoener, 2011; Dall et al., 2012). Recent 
empirical and theoretical work has aimed at revealing mecha-
nisms by which individual diversity and rapid trait change are 
driving ecological interactions and ecosystem function 
(Bolnick et al., 2007; Ellner et al., 2011; Lundsgaard-Hansen 
et al., 2014). Drawing heavily on lessons from the fisheries 
realm, investigations have documented that individual trait 
variation plays a significant role in trophic ecology, ecosystem 
processes and evolutionary feedbacks (Palkovacs et al., 2012). 
Bolnick et al. (2011) provide a framework for evaluating the 
ecological role of individual variation and have identified theo-
retical mechanisms, broadly categorized as direct and indirect 
effects, which operate at the individual level to affect 
 ecosystem-scale processes. A main conclusion from this course 
of study is that the effect of trait change within a population 
may disproportionately influence ecosystem function and may 
even impart a greater effect than species extirpation or extinc-
tion (Palkovacs et al., 2012). Some have taken this sentiment 
further and identified instances where the effects of a particu-
lar individual on population or community dynamics are so 
profound that the individual can be said to play a ‘keystone’ 
role in ecological processes (Modlmeier et al., 2014).

Eco-evolutionary dynamics of exploited 
fisheries
There is a breadth of literature in fisheries science that 
addresses observed trait change corresponding to overharvest 
(Conover et al., 2005; Kuparinen and Merilä, 2007; Sharpe 
and Hendry, 2009; and see Box 1 for select examples). 
Managing fisheries resources at an ecosystem scale calls 

 practitioners to account for ecosystem processes at evolution-
ary time scales (Pikitch et al., 2004; Laugen et al., 2014). For 
example, size-selective mortality is a central component shap-
ing life histories, influencing the recruitment capacity of a 
population and its ability to buffer additional pressures, such 
as changing environments and adult predation (Kuparinen 
et al., 2012). Human-induced selection is an important factor 
influencing mortality and is a crucial consideration in forecast-
ing fisheries productivity (Kuparinen and Merilä, 2007; 
Gallagher et al. 2015). For example, in a model where risk 
taking was allowed to evolve in response to harvesting, natural 
mortality was predicted to increase by about half the imposed 
fishing mortality (Jørgensen and Fiksen, 2010; Jørgensen and 
Holt, 2013). Furthermore, it is widely recognized that com-
mercial fishing practices can preferentially take larger individ-
uals, potentially selecting for fish that mature earlier and at 
smaller sizes (Ernande et al., 2004; Jørgensen et al., 2009). 
More recent evidence also suggests that active and passive 
gears may select for different behavioural phenotypes (Diaz 
Pauli et al., 2015), and differences in traits associated with 
metabolism and swimming performance may translate into 
variation in susceptibility to capture by trawl (Killen et al., 
2015).

Evidence and theory suggest that management actions (e.g. 
moratoriums and length restrictions) in response to observed 
decreases in size at maturation and elevated natural mortality 
have often failed to reverse life-history evolution induced by 
fisheries (Enberg et al., 2009; Swain, 2011; Kuparinen et al., 
2014). Consequently, populations may be slow to rebound 
from fisheries-induced evolution and, taken together, these 
micro-evolutionary processes have the capacity to alter eco-
logical interactions (Palkovacs et al., 2012), become self re-
enforcing (Kuparinen et al., 2014) and contribute to ecosystem 
change (Daskalov et al., 2007). It is therefore crucial that an 
EAFM act in a proactive and co-adaptive management 
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Box 1: (Continued)

 acidification, which have received considerable attention for their ecological consequences (Munday et al., 2009a). Rising 
temperatures have the capacity to alter the primary productivity of ecosystems, influencing bioenergetic relationships on 
individual and ecosystem scales (Barneche et al., 2014; Queirós et al., 2015). In terms of individual fish diversity, metabolic 
constraints on organismal performance may result in homogenized phenotypes via directional selection or portfolio damp-
ening (Helmuth, 2009; Holt and Jørgensen, 2014). Changes to regional climate may also induce shifts in the phenology, an 
important constraint of ecosystem processes of relevance to EAFM. Earlier spawning migration during periods of warming 
is a widely documented population-level phenomenon among salmonids; however, recent investigations have contrasted 
the relative rate of phenotypic change both across and within species and life-history strategies to reveal the ecological 
processes underlying phenological change (Kovach et al., 2013). The authors highlighted that the response to climate 
warming (here, migration timing) was consistently earlier across species; however, the largest shift in phenotypic variation 
was seen within populations (regardless of an individual’s life-history strategy). However, the disparate responses observed 
by Kovach et al. (2013) between some life-history strategies of the same population denote an aspect of population ecology, 
known as ‘biocomplexity’, by which discrete phenotypes can respond to differing environmental conditions. Given the 
dynamic shifts in phenotypic expression resulting from climate change, an important management objective remains to 
parse the genetic mechanisms underlying this change. Plastic responses are likely to be widespread (Enberg et al., 2009) but 
not ubiquitous. Further investigation is required to determine the heritability and ecological processes responsible for 
changing traits at a population level, particularly in the face of continued environmental change.
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 capacity, to account for standing levels of trait diversity within 
a population and to apply management strategies at a time 
scale relevant to observed changes in trait diversity.

An ongoing challenge under EAFM will be to parse the 
mechanisms driving the observed trait changes in many fisheries 
and evaluate the relative contributions of genotypic and 
 phenotypic variation (Benton et al., 2006). In theory, fisheries-
induced evolution can occur if individual fish within a popula-
tion vary in their vulnerability to capture, via differences in 
size, physiology or behaviour, and if these differences are 
heritable (Uusi-Heikkilä et al., 2008; Diaz Pauli et al., 2015). 
However, another important consequence of intensive fishing 
is the large-scale removal of biomass from aquatic ecosystems 
that can change adaptive landscapes through density- 
dependent effects on food availability, competition and 
recruitment, with selective effects on life-history traits and the 
specific phenotypes that are then favoured (Enberg et  al., 
2009; Heino et al., 2013). For example, in a dense population 
with intense competition for resources, more aggressive phe-
notypes may have an advantage, whereas in sparse popula-
tions with little competition for available resources, aggression 
may be under weaker selection. An EAFM needs to consider 
how harvest changes the complexion of ecosystems and gener-
ates density-dependent effects on evolutionary trajectories of 
the resident fishes. Fishing will inevitably lead to some change 
in population size, even in sustainable fisheries, so it is impor-
tant to understand better how such changes might affect which 
traits are exposed to natural and anthropogenic selection.

Inherent in holistic management frameworks is the recog-
nition that an increased understanding of fisheries character-
istics can modify selective fishing practices to maximize the 
ecological and evolutionary stability of managed ecosystems 
(Pikitch et al., 2004; Patrick and Link, 2015). As argued previ-
ously, individual diversity is ubiquitous among wild popula-
tions and may reflect an evolutionarily stable strategy that 
buffers against changing environmental conditions and sud-
den demographic shifts and may facilitate micro-evolutionary 
processes (Spicer and Gaston, 1999; Williams, 2008; Dall 
et al., 2012). To embrace this paradigm, managers are called 
to act within two predominant schools of thought about regu-
lating the specificity of capture methods under an EAFM; 
these are more or less selectivity in fish harvest methods. Zhou 
et al. (2010) have posited that a less selective ‘balanced exploi-
tation’ could mitigate negative effects of selective harvest by 
spreading harvest pressure across genotypes and populations. 
As we have reasoned, the maintenance of genetic and pheno-
typic diversity fits within the framework of EAFM; however, 
a trade-off to decreased capture selectivity within species is 
that there may also be decreased capture selectivity among 
species (Garcia et al., 2012), potentially leading to unwanted 
bycatch. For example, alterations to fishing procedures or 
gear types to reduce size selectivity within a species may also 
retain species across a broad range of sizes. A challenge associ-
ated with decreasing selection on particular phenotypes is 
how to achieve a compromise between inter- and intraspecific 
gear selectivity.

Deriving ecosystem reference points from 
individual diversity
Accounting for the great many sources of individual variation 
within fisheries selectivity is a daunting task, but ignoring 
the  existence and role of such diversity has unintended 
 consequences, such as those associated with fisheries-induced 
evolution. Given the current status of EAFM application 
(Fogarty and Rose, 2013; Patrick and Link, 2015), it is unre-
alistic that all sources of intrapopulation diversity be 
accounted for in forecasting models or for regulating harvest 
of specific phenotypes. Following recent calls for applying the 
current state of knowledge to ecosystem monitoring (Schindler 
and Hilborn, 2015), we suggest that monitoring suites of 
important morphological, physiological and/or behavioural 
characters, similar to detailed records of life-history traits, be 
implemented to derive benchmarks for individual diversity 
within populations. Detailed records of population trait 
change over time have been instrumental in casting light on 
contemporary processes (i.e. fisheries-induced evolution), and 
these data sets may also be leveraged to derive reference 
points for how shifts in the magnitude of within-population 
phenotypic diversity are important for ecosystem-scale pro-
cesses. For example, Andersen and Beyer (2013) applied novel 
ecological concepts of maternal effects to re-evaluate refer-
ence points for northern cod, showing that life-history strat-
egy was an important driver of harvest vulnerability.

Not only will existing reference points change as a function 
of fishing-induced evolution (Enberg et al., 2010; Heino et al., 
2013), but there will also be a need for developing new reference 
points for fisheries management (e.g. Hutchings, 2009) to mon-
itor, understand and conserve physiological, behavioural and 
phenotypic diversity better in fisheries populations. However, 
owing to the dynamic nature of ecosystems, characterizing a 
baseline ecosystem reference state may be difficult (Pauly 1995; 
Norris 2000), and the same may be true for individual variabil-
ity. Consequently, reference points should be monitored consis-
tently to account for and reflect shifting baselines.

Emerging technologies are enabling the monitoring of eco-
system and individual reference points with increasing preci-
sion and regularity. Alongside our growing understanding of 
abiotic and biotic environmental variables, it may be pertinent 
to develop individual-based metrics of ecosystem state. 
Although the development of ecosystem indicators based on 
individual organismal state presents a challenge, it is not an 
unattainable goal (Cooke and Suski, 2008; Adams and Ham, 
2011; Jeffrey et al., 2015). Understanding the spatial ecology 
of fisheries species and prey resources remains an integral chal-
lenge facing EAFM. In order to gain insights into individual 
diversity in habitat use over time, it is necessary to determine 
both the internal (behavioural and physiological) constraints 
and the external pressures (seasonality, climate variability and 
anthropogenic habitat change) governing space use (Nathan 
et al., 2008). However, the free-ranging, predatory nature of 
many marine fish species introduces a number of difficulties 
for conducting individual-based studies. Observation-based 
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studies for marine species can be expensive and highly demand-
ing, although information produced from these studies can be 
directly relevant to fisheries management (e.g. Brill, 1994). In 
recent decades, technological advances, particularly in electronic 
data-storage tags, biologgers and  biotelemetry technologies, 
have made long-term, high-resolution behavioural studies fea-
sible (Hussey et al., 2015). Furthermore, integrative studies 
that attempt to identify relationships between environmental 
parameters and internal physiological states will advance our 
knowledge of individual behaviour and its bearing on broader 
ecosystem processes. Behavioural traits associated with preda-
tion risk may be of particular importance for EAFM. This is 
because many of these traits, such as individual boldness, activ-
ity and exploratory tendency, could make some individuals 
especially likely to encounter and be captured by recreational 
or commercial fishing gears (Uusi-Heikkilä et al., 2008; Diaz 
Pauli et al., 2015). As these traits also involve a trade-off with 
foraging activity, where riskier individuals are generally more 
active foragers (Lima and Dill, 1990), selection against a par-
ticular behavioural phenotype by fisheries could therefore 
affect species in other parts of the food web. Although large 
changes in fish biomass caused by fishing may outweigh shifts 
in phenotype abundance, in terms of the overall effects on the 
foraging requirements of a population and prey abundance, a 
depletion of top predators within an ecosystem will change 
selective pressures on resource prey and might influence the 
degree of risk-prone behavioural phenotypes present in prey 
populations (Abrams, 2009; Archard et al., 2012).

A significant challenge associated with EAFM, and specifi-
cally individual diversity-based reference points, is that not 
only do traits vary among individuals, but also the nature and 
strength of correlations between traits depends on the prevail-
ing environmental conditions (Killen et al., 2013). For exam-
ple, metabolic rate and growth rate may be positively 
correlated in the presence of high food availability but show 
weak or negative correlations when food is scarce (Burton 
et al., 2011). Genetic correlations among life-history traits are 
also labile across varying environments (Sgrò and Hoffmann, 
2004). Efforts to preserve habitats or change suites of ecosys-
tem components through habitat modification may therefore 
have unanticipated effects on which traits are exposed to 
direct or correlated selection. The ecosystem parameters that 
are defined as ‘normal’ or that are targets for preservation 
need careful consideration, because the environmental condi-
tions will also have a direct bearing on the phenotypes that are 
expressed and the degree of variation that is present. In highly 
stable environments, for example, there may be less pheno-
typic heterogeneity on which selection can act, even if there is 
underlying genetic diversity within the population.

Theoretical, strategic and tactical model-
ling in support of ecosystem-based 
approaches to fisheries management
Anthropogenic impacts on fisheries are not only manifested as 
predatory behaviour (Darimont et  al., 2009, 2015), but 

 mankind has also changed the atmosphere so that it in turn 
modifies the physical properties of the oceans (IPCC, 2014). 
In addition to harvest and climate change, humans also pol-
lute, translocate species, spread pathogens, destroy or frag-
ment habitats and reduce connectivity. It has therefore been 
argued that the selective environment has rarely, if ever, 
changed as rapidly as now (Carroll et al., 2007). As such, 
there is a pressing need to parse the evolutionary response to 
changing selection pressures (e.g. Holt and Jørgensen, 2015), 
as well as the mechanisms of trait change within populations 
(Ellner et al., 2011; Yamamichi et al., 2011).

Models designed to study individual variation in adult fish 
often place less emphasis on a complex external environment 
and instead focus on life-history strategies or behaviours. The 
first models of population responses to changing selection 
pressures, such as industrial fishing, only had one or a few 
traits (e.g. Law and Grey, 1989), but models have since 
included evolutionary processes explicitly (Dunlop et  al., 
2009) or included more detailed physiology (Jørgensen and 
Fiksen, 2006). In these models, the level of between-individual 
variation emerged from physiological constraints, ecological 
processes and the selective environment. Two processes that 
may contribute to maintaining additive genetic variance are as 
follows: (i) fluctuating selection as a result of genotype– 
environment interactions (e.g. Grant et al., 2004); and (ii) fre-
quency dependence leading to coexistence of multiple strategies 
(Smith, 1982). Both are likely to be common and, when com-
bined in a recent model for decision-making of behaviour in a 
pelagic fish, between-individual variation increased as one 
moved from fitness via life-history traits and behaviour 
through to the genome (Giske et al., 2014). The authors’ inter-
pretation is that there are several life-history combinations 
that successfully achieve fitness, several behaviours that over 
time can sustain similar life histories, and multiple ways for 
the genome to be coded that will result in the same behav-
ioural decisions. The degree of between-level variation thus 
depends, in predictable ways, on the hierarchical level one 
focuses on. As a consequence, it is likely that one can make 
better or worse choices for quantifying between-level vari-
ance, particularly if the aim is to predict emergent population-
level characteristics of interest to fisheries managers or 
conservationists.

It seems as though considerable changes are needed in 
 classical fisheries models, which typically disregard within-
population variation and instead lump individuals together in 
undifferentiated biomass (Beverton and Holt, 1959; Hilborn 
and Walters, 1992). Sometimes biomass is divided into age or 
length groups, and often sexually mature biomass is treated 
separately, but essentially the classical models treat individuals 
as being all the same and all doing the same things. Here, we 
highlight recent progress, in which individual variation plays a 
more central role. This is perhaps easiest to appreciate in indi-
vidual-based models embedded within physical ocean models. 
Physical ocean modelling has, over the last decades, become a 
reliable and operationalized tool that assimilates observations 
and predicts temperature, flow and other water properties. For 
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example, using a global ocean model, Follows et al. (2007) 
seeded 78 phytoplankton types that differed in their physiol-
ogy and let the ambient environment and local competition for 
light and nutrients determine species  abundance; the emerging 
biogeography recaptured many of the observed phenomena in 
species distributions and dynamics. Likewise, Mullon et al. 
(2002) simulated larval drift from multiple spawning sites and 
assumed natal homing by the adults and, after multiple genera-
tions of artificial evolution, the model had identified profitable 
spawning sites where the life cycle could be effectively closed. 
Another model study followed fish larvae of Atlantic cod that 
differed in their risk-taking behaviour (Vikebø et al., 2007); 
although intermediate risk taking was favoured, the optimal 
behaviour differed between spawning sites separated by only 
short geographical distances. In these studies, it is the dyna-
mism of the local physical environment that brings about inter-
individual differences in drift, growth, survival and success. By 
assuming physiology and behavioural rules, similar approaches 
are now used to predict inter-annual differences in the survival 
of early life stages for several commercial fish stocks (e.g. 
Daewel et al., 2011; Peck and Hufnagl, 2012). These individ-
ual-based models are designed to include individual trait diver-
sity, but more work is needed to understand physical and 
biological processes (either bottom-up or top-down) acting to 
favour variation in specific traits of early life stages and how 
those and other traits may be linked and altered by the envi-
ronment to influence individual (lifetime) fitness (Johnson and 
Hixon, 2010).

Currently, there are various types of complex models (beyond 
0-D single- and multispecies models) that could incorporate 
information in inter-individual variation to inform EAFM. Most 
of these models represent the spatial dynamics of marine food 
webs, and some represent interactions among and between indi-
viduals and their environment. Biomass-based (Ecopath-with-
Ecosim, EwE; Christensen and Walters, 2004), size-structured 
(Object-oriented Simulator of Marine ecOSystems Exploitation, 
OSMOSE; Shin and Cury, 2001) or ‘end-to-end’ (Atlantis; 
Fulton et al., 2011) simulations are examples of models that 
include spatially explicit food web interactions. Atlantis, the 
most complex model, creates a virtual ecosystem incorporating 
industrial activity, which allows trade-offs between various 
competing economic sectors to be examined, such as fisheries vs. 
conservation (Fulton et al., 2011; Morzaria-Luna et al., 2012). 
For each model, individual variability in key parameters could 
be included to account for ‘bottom-up’ ecosystem effects; for 
example, in EwE, model parameters such as diet matrices (prey 
availability) can be varied; in OSMOSE and Atlantis, movement 
variants of ‘super particles’ (individuals) can be included, or like-
wise for OSMOSE and Atlantis, aspects of life-history diversity 
such as changes in size at maturity or timing of ontogenic shifts 
can be included. Although these coding exercises may seem 
overly complex, recent studies have required similar consider-
ations. For example, to capture long-term changes in the tropho-
dynamic structure and function in Australian waters adequately, 
Atlantis simulations needed to include fisheries-induced evolu-
tion of maturation schedules and fish size (Fulton, 2011). Hence, 

food web models informing EAFM can be used to explore to 
individual-level variation and can demonstrate how failing to 
account for trait variation may affect management goals.

Conclusion
Patrick and Link, (2015) state that, ‘ecosystem-based fisher-
ies management takes a macrolevel look at system-level pro-
ductivity, while protecting against overfishing, to smooth out 
the variability that occurs at the individual species level’. We 
contend that overlooking variation among individuals within 
a species or population can be a detriment to the objectives of 
EAFM. Implicit in their recognition of the drivers of popula-
tion productivity (i.e. harvest selectivity, trophic interactions 
and fluctuating environmental conditions) is the role that 
individuals play in broader population responses to fisheries 
management. We agree that in the absence of perfect data or 
regulatory frameworks, managers should move forward 
within existing authorities to apply the current state of 
knowledge towards best management practices (Schindler 
and Hilborn, 2015) and argue that data for at least some 
examples of individual trait diversity are sufficient to do so 
(e.g. demographic size metrics). Promoting phenotypic diver-
sity is an initiative that can impart fisheries with resiliency to 
environmental perturbations, as well as facilitating natural 
ecological and evolutionary processes. Furthermore, consid-
eration of individual diversity not only falls within the scope 
of ecosystem approaches to fisheries management, but it is 
also consistent with the objective of stabilizing ecosystem 
processes.

It is not our intention to detract from the importance of 
multispecies perspectives and, indeed, we embrace the notion 
that holistic approaches need to consider ecosystem interac-
tions from multiple viewpoints, including individual-level 
variation, in order to manage ecosystem processes effec-
tively. As we broaden the scope of our management efforts to 
ecosystem scales, we call for the recognition that it is not 
only diversity in community structure, but also diversity 
within constituent populations that drives ecosystem func-
tion (Spicer and Gaston, 1999). In yet another instance of 
scaling across biological hierarchies, we can see that just as 
a broader tolerance of environmental constraints within an 
organism can increase its fitness, so can a diversity of indi-
viduals within a population raise the ecological plasticity of 
the community (Dall et al., 2012; Lundsgaard-Hansen et al., 
2014). Given that supporting multiple ecological functions 
improves the resilience of an ecosystem to disturbance 
(Thrush and Dayton, 2010), it is imperative to provide a 
foundation for ecosystem variance rooted in diversity among 
individuals. There has been a recent call from academics that 
conservation practitioners should recognize the pitfalls of 
forecasting ecosystem states and, instead, implement man-
agement strategies that maximize ecosystem services across 
a range of future uncertainties (Patrick and Link, 2015; 
Schindler and Hilborn, 2015). We  believe that current 
knowledge, regarding how  individual diversity may underlie 
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population responses to fisheries management, can support 
and enhance an EAFM by increasing ecosystem resilience in 
the face of environmental change.
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