30 research outputs found

    DISTRIBUCI脫N GEOESPACIAL DEL MOSQUITO Culex quinquefasciatus(DIPTERA:CULICIDAE) PRINCIPAL VECTOR DEL VIRUS DEL OESTE DEL NILO, EN LA ZONA URBANA DE CIUDAD JU脕REZ, CHIHUAHUA, M脡XICO.

    Get PDF
    El objetivo fue estimar los factores socioecon贸micos que condicionan la distribuci贸n espacial de Culexquinquefasciatus en Ciudad Ju谩rez, Chihuahua, M茅xico. Se colectaron mosquitos con minitrampas de luz y CO2usando como unidad de an谩lisis las 脕reas Geogr谩ficas B谩sicas (AGEB). Se aplic贸 un SIG as铆 como t茅cnicas de an谩lisis geoespacial. Se observ贸 una autocorrelaci贸n positiva para la poblaci贸n del vector con valores de I de Moran de 0.33, 0.25, 0.17, 0.11 y de c de Geary de 0.34, 0.45, 0.55, 0.64 para los radios de 1000, 2000, 3000 y 4000 m respectivamente. Los 铆ndices locales Gi(d) de Getis estiman las mas altas poblaciones en la zona norponiente y suroriente de la ciudad. El modelo de regresi贸n explica el 22.1% de la densidad de Cx. quinquefasciatus; el grado de escolaridad y porcentaje de alfabetismo en la poblaci贸n est谩n correlacionados negativamente as铆 como la densidad de vivienda y la posesi贸n de bienes. La correlaci贸n positiva esta en el 谩rea, la densidad poblacional , en la baja calidad de construcci贸n de las viviendas y el ingreso econ贸mico.Palabras clave: autocorrelaci贸n, arbovirus, Sistemas de Informaci贸n Geogr谩ficaautocorrelation, arbovirosis, Geographical Information Syste

    Patrones de concentraci贸n de carbono negro y principales fuentes de emisi贸n en Ciudad Ju谩rez, Chihuahua

    Get PDF
    El carbono negro (CN) es un contaminante atmosf茅rico producido de forma natural y como resultado de la combusti贸n incompleta de combustibles f贸siles, biocombustibles y biomasa. La regi贸n Paso del Norte (M茅xico-Estados Unidos) no cuenta con monitoreo continuo de CN, aun cuando M茅xico tiene la meta internacional de reducir sus emisiones en 51% para el 2030. El objetivo este estudio fue evaluar el patr贸n de comportamiento del CN y su correlaci贸n con 贸xido de nitr贸geno (NOx) y carbono (CO) por su asociaci贸n a emisiones vehiculares a di茅sel. El monitoreo fue de octubre de 2018 a marzo de 2019 por ser los meses del a帽o m谩s fr铆os y de mayor estabilidad atmosf茅rica en la regi贸n. Las concentraciones de CN, todos los contaminantes criterio y la meteorolog铆a se determinaron mediante etal贸metro, analizadores Teledyne y estaci贸n meteorol贸gica Campbell Scientific en la estaci贸n de referencia cient铆fica IIT-01 en Ciudad Ju谩rez, Chihuahua, M茅xico. La correlaci贸n de Spearman arroj贸 una CO y NOx de R=0.735 y entre CO y CN de R=0.704. Los resultados apoyan la relaci贸n significativa entre CN y NOx de R=0.794. Los resultados apoyan la posibilidad de que la fuente del CN est谩 asociada al tr谩fico vehicular y a su patr贸n t铆pico de comportamiento. Adem谩s de que la correlaci贸n significativa entre el CO y CN permitir谩 realizar estimaciones sobre el comportamiento del CN en base a las concentraciones de CO registradas por otras estaciones. DOI: https://doi.org/10.54167/tecnociencia.v14i2.39

    Impacts of Urbanization and Intensification of Agriculture on Transboundary Aquifers: A Case Study

    No full text
    The objectives were to (1) delineate the complex set of rules governing the fate and transfer of water rights as agricultural land is urbanized in Texas and New Mexico in the United States and Chihuahua in Mexico and (2) estimate the change in water use as a result of such urbanization. Important additional determinants of water use in the region include intensification of agriculture and the hydroschizophrenic policy framework. We conducted interviews with key informants to identify the possible outcomes for changes in water rights as land is urbanized. We constructed decision trees for each of the three jurisdictions, Chihuahua, Texas, and New Mexico, that identified the possible outcomes from urbanization. For each of the possible outcomes in the decision tree, we estimated a range of potential water use outcomes and the most likely water use outcome on a per unit of land area basis. Results show that urbanization of agricultural land has almost no impact on the aggregate demand for or use of surface water. However, the impacts of urbanization on groundwater use vary considerably over the region from Texas to New Mexico to Chihuahua. In New Mexico and Chihuahua where groundwater rights can be leased or sold to other users, the likely impact is a net increase in groundwater use as land is urbanized, ranging from 0 to 3,000 m3/ha in New Mexico and averaging 3,000 m3/ha or more in Chihuahua. In Texas, there is a net benefit in groundwater savings, but those savings are subject to being offset by increased groundwater pumping to meet the needs of expanding pecan production. The net result is continued groundwater depletion, threatening the life of the transboundary aquifers, the Hueco Bolson and the Mesilla Bolson, in the Middle Rio Grande basin (defined as the part of the basin between Elephant Butte Reservoir in New Mexico to the confluence of the river with the Rio Conchos from Mexico)

    Urban evaporative consumptive use for water鈥恠carce cities in the United States and Mexico

    No full text
    In this work, we estimate urban evaporative consumptive use (urban ECU) in three cities in a semiarid region experiencing water scarcity: El Paso, Texas, and Las Cruces, New Mexico, in the United States and Ciudad Ju谩rez, Chihuahua, in Mexico. Urban ECU includes vegetation and bare soil evapotranspiration (ET) and evaporation from open water, water supply infrastructure losses, and building evaporative coolers. Three independent methods were used to estimate urban ECU from individual ECU components and from utility accounting data. The three methods produced urban ECU estimates that varied by an average of 24%. Most of the disagreement was attributed to potential overestimation of vegetation and bare soil ET. Vegetation and bare soil ET account for up to 90% of total urban ECU. Urban ECU accounts for up to 60% of total annual water demand. Per capita ECU from the U.S. cities is, on average, 149 m3/capita/year, compared with 51鈥塵3/capita/year for Ciudad Ju谩rez

    Urban evaporative consumptive use for water-scarce cities in the United States and Mexico

    No full text
    In this work, we estimate urban evaporative consumptive use (urban ECU) in three cities in a semiarid region experiencing water scarcity: El Paso, Texas, and Las Cruces, New Mexico, in the United States and Ciudad Ju谩rez, Chihuahua, in Mexico. Urban ECU includes vegetation and bare soil evapotranspiration (ET) and evaporation from open water, water supply infrastructure losses, and building evaporative coolers. Three independent methods were used to estimate urban ECU from individual ECU components and from utility accounting data. The three methods produced urban ECU estimates that varied by an average of 24%. Most of the disagreement was attributed to potential overestimation of vegetation and bare soil ET. Vegetation and bare soil ET account for up to 90% of total urban ECU. Urban ECU accounts for up to 60% of total annual water demand. Per capita ECU from the U.S. cities is, on average, 149 m3/capita/year, compared with 51 m3/capita/year for Ciudad Ju谩rez

    Clasificacio虂n geoespacial de los indicadores del medio fi虂sico para la recarga del acui虂fero Palomas-Guadalupe Victoria, Chihuahua, Me虂xico

    No full text
    La recarga de agua es una estrategia importante para el sostenimiento del nivel hidrosta虂tico de los acui虂feros. En el norte de Me虂xico se localiza el acui虂fero Palomas-Guadalupe Victoria, donde gran parte de su recarga ocurre sobre la superficie de la Cuenca Baja del ri虂o Casas Grandes (CBRCG), en esta cuenca la principal pe虂rdida de agua ocurre en los procesos de evapotranspiracio虂n y evaporacio虂n, ya que es una cuenca endorreica. El proceso metodolo虂gico para el presente estudio consistio虂 en la clasificacio虂n geoespacial de los Factores Potenciales de Recarga (FPR) como indicadores del medio fi虂sico, procesando y analizando datos vectoriales e ima虂genes satelitales ASTER. Los resultados obtenidos a partir del procedimiento metodolo虂gico determinan tres clases, que indican el potencial de recarga; la clase tres que se distribuye en los piedemonte de la sierra de Las Coloradas, sierra de Boca Grande, sierra Las Lilas, sierra El Cartucho y sobre el cauce del ri虂o Casas Grandes, y tiene un a虂rea de 192.94 km2, la clase dos que se distribuye principalmente en el valle que forman la sierra de las Coloradas, la sierra de Boca Grande, y por el ri虂o Casas Grandes, y cuenta con un a虂rea de 838.83 km2, por u虂ltimo se tiene la clase uno, la cual se distribuye al este del ri虂o Casas Grandes, y cuenta con un a虂rea de 747.97 km2. Se concluye que la metodologi虂a empleada para la clasificacio虂n de los indicadores del medio fi虂sico es altamente efectiva para identificar las zonas potenciales para la recarga de acui虂feros. Abstract The groundwater recharge is a strategic important to the water table aquifers sustainability. In northern Mexico the aquifer Palomas-Guadalupe Victoria is located, where much of its recharge occurs on the surface of the Lower Casas Grandes Basin (LCGB), in this basin the main water loss occurs in the processes of evaporation and evapotranspiration, since it is an endorheic basin. The methodological process for this study consisted of geospatial classification of the Recharge Potential Factor (RPF) as indicators of the physical environment, processing and analyzing vector data and satellite images ASTER. The obtained results from the methodological process determine three classes that indicates the recharge potential; the class three is distributed in the foothills of the Sierra Las Coloradas, Sierra Boca Grande, Sierra Las Lilas, Sierra El Cartucho and on the Casas Grandes River, and it has an area of 192.94 square kilometers; the class two is mainly distributed in the valley formed by the Sierra Las Coloradas, Sierra Boca Grande and the Casas Grandes River, and it has an area of 838.83 square kilometers; finally, it is the class one, that is distributed to the east of the Casas Grandes River and it has an area of 747.97 square kilometers. It is concluded that the methodology for the classification of the indicators of the physical environment is highly effective to identify the potential zones for ground water recharge. Keywords: RPF, LCGB, lineaments
    corecore