6,777 research outputs found
Winning Organizational Campaigns, Communicating Adverse Consequences of Unionism: The Board’s View, circa 1980
Article about union-free work environments
Information transfer in the National Airspace System
An informal overview is given of the work in progress and the planned work in the area of information transfer that specifically addresses human factors issues in National Airspace System (NAS). The issues of how weather information will be displayed on the flight deck, the development of appropriate decision making technology, and digital datalink transmission are also briefly discussed
Display-based communications for advanced transport aircraft
The next generation of civil transport aircraft will depend increasingly upon ground-air-ground and satellite data link for information critical to safe and efficient air transportation. Previous studies which examined the concept of display-based communications in addition to, or in lieu of, conventional voice transmissions are reviewed. A full-mission flight simulation comparing voice and display-based communication modes in an advanced transport aircraft is also described. The results indicate that a display-based mode of information transfer does not result in significantly increased aircrew workload, but does result in substantially increased message acknowledgment times when compared to conventional voice transmissions. User acceptance of the display-based communication system was generally high, replicating the findings of previous studies. However, most pilots tested expressed concern over the potential loss of information available from frequency monitoring which might result from the introduction of discrete address communications. Concern was expressed by some pilots for the reduced time available to search for conflicting traffic when using the communications display system. The implications of the findings for the design of display-based communications are discussed
Outline of a Theory of non-Rankine-Hugoniot Shock Wave in Weak Mach Reflection
At the previous AFMC, the background for expecting a departure from Rankine-Hugoniot theory at the base of the reflected shock wave in weak Mach reflection was exposed. The results of some pertinent experiments performed in the supersonic wind tunnel were then presented. They confirmed the hypothesised irregular behaviour. In the present contribution, the elaboration of a theory of transgressed shock wave properties is presented. This concept enables to calculate the modified jump process. It fully accounts for the known experimental observations. It is the unyielding boundary conditions that prevail beyond regular reflection which force this remarkable deviation from the classical shock wave theory to take place
Applications of ISES for snow, ice, and sea state
There will be six facility instruments on the NASA NPOP-1 and NPOP-2 and additional instruments on the Japanese and European satellites. Also, there are the 24 selected NASA instruments that may be flown on one of the platforms. Many of these instruments can provide data that could be very useful for real-time data studies in the snow and ice area. Any one instrument is not addressed in particular, but emphasis is placed on what is potentially possible using the capabilities of some of these instruments
Covariant spectator theory of quark-antiquark bound states: Mass spectra and vertex functions of heavy and heavy-light mesons
We use the covariant spectator theory with an effective quark-antiquark
interaction, containing Lorentz scalar, pseudoscalar, and vector contributions,
to calculate the masses and vertex functions of, simultaneously, heavy and
heavy-light mesons. We perform least-square fits of the model parameters,
including the quark masses, to the meson spectrum and systematically study the
sensitivity of the parameters with respect to different sets of fitted data. We
investigate the influence of the vector confining interaction by using a
continuous parameter controlling its weight. We find that vector contributions
to the confining interaction between 0% and about 30% lead to essentially the
same agreement with the data. Similarly, the light quark masses are not very
tightly constrained. In all cases, the meson mass spectra calculated with our
fitted models agree very well with the experimental data. We also calculate the
mesons wave functions in a partial wave representation and show how they are
related to the meson vertex functions in covariant form.Comment: 23 pages, 10 figures. Minor corrections of previous version. To be
published in Phys. Rev.
Singularity-free two-body equation with confining interactions in momentum space
We are developing a covariant model for all mesons that can be described as
quark-antiquark bound states in the framework of the Covariant Spectator Theory
(CST) in Minkowski space. The kernel of the bound-state equation contains a
relativistic generalization of a linear confining potential which is singular
in momentum space and makes its numerical solution more difficult. The same
type of singularity is present in the momentum-space Schr\"odinger equation,
which is obtained in the nonrelativistic limit. We present an alternative,
singularity-free form of the momentum-space Schr\"odinger equation which is
much easier to solve numerically and which yields accurate and stable results.
The same method will be applied to the numerical solution of the CST
bound-state equations.Comment: 4 pages, 2 figures, talk presented at the 22nd European Conference on
Few-Body Problems in Physics (EFB22), Krakow, Poland, 9 - 13 September 201
Application of the Covariant Spectator Theory to the study of heavy and heavy-light mesons
As an application of the Covariant Spectator Theory (CST) we calculate the
spectrum of heavy-light and heavy-heavy mesons using covariant versions of a
linear confining potential, a one- gluon exchange, and a constant interaction.
The CST equations possess the correct one-body limit and are therefore
well-suited to describe mesons in which one quark is much heavier than the
other. We find a good fit to the mass spectrum of heavy-light and heavy-heavy
mesons with just three parameters (apart from the quark masses). Remarkably,
the fit parameters are nearly unchanged when we fit to experimental
pseudoscalar states only or to the whole spectrum. Because pseudoscalar states
are insensitive to spin-orbit interactions and do not determine spin-spin
interactions separately from central interactions, this result suggests that it
is the covariance of the kernel that correctly predicts the spin-dependent
quark-antiquark interaction
Confinement, quark mass functions, and spontaneous chiral symmetry breaking in Minkowski space
We formulate the covariant equations for quark-antiquark bound states in
Minkowski space in the framework of the Covariant Spectator Theory. The quark
propagators are dressed with the same kernel that describes the interaction
between different quarks. We show that these equations are charge-conjugation
invariant, and that in the chiral limit of vanishing bare quark mass, a
massless pseudoscalar bound state is produced in a Nambu-Jona-Lasinio (NJL)
mechanism, which is associated with the Goldstone boson of spontaneous chiral
symmetry breaking. In this introductory paper, we test the formalism by using a
simplified kernel consisting of a momentum-space delta-function with a vector
Lorentz structure, to which one adds a mixed scalar and vector confining
interaction. The scalar part of the confining interaction is not chirally
invariant by itself, but decouples from the equations in the chiral limit and
therefore allows the NJL mechanism to work. With this model we calculate the
quark mass function, and we compare our Minkowski-space results to lattice QCD
data obtained in Euclidean space. In a companion paper, we apply this formalism
to a calculation of the pion form factor.Comment: 17 pages, 12 figures, version published in Phys. Rev.
Pion electromagnetic form factor in the Covariant Spectator Theory
The pion electromagnetic form factor at spacelike momentum transfer is
calculated in relativistic impulse approximation using the Covariant Spectator
Theory. The same dressed quark mass function and the equation for the pion
bound-state vertex function as discussed in the companion paper are used for
the calculation, together with a dressed quark current that satisfies the
Ward-Takahashi identity. The results obtained for the pion form factor are in
agreement with experimental data, they exhibit the typical monopole behavior at
high-momentum transfer, and they satisfy some remarkable scaling relations.Comment: 11 pages, 8 figures, version published in Phys. Rev.
- …