9,348 research outputs found

    Inflowing gas onto a compact obscured nucleus in Arp 299A: Herschel spectroscopic studies of H2O and OH

    Full text link
    Aims. We probe the physical conditions in the core of Arp 299A and try to put constraints to the nature of its nuclear power source. Methods. We used Herschel Space Observatory far-infrared and submillimeter observations of H2O and OH rotational lines in Arp 299A to create a multi-component model of the galaxy. In doing this, we employed a spherically symmetric radiative transfer code. Results. Nine H2O lines in absorption and eight in emission as well as four OH doublets in absorption and one in emission, are detected in Arp 299A. No lines of the 18O isotopologues, which have been seen in compact obscured nuclei of other galaxies, are detected. The absorption in the ground state OH doublet at 119 {\mu}m is found redshifted by ~175 km/s compared to other OH and H2O lines, suggesting a low excitation inflow. We find that at least two components are required in order to account for the excited molecular line spectrum. The inner component has a radius of 20-25 pc, a very high infrared surface brightness (> 3e13 Lsun/kpc^2), warm dust (Td > 90 K), and a large H2 column density (NH2 > 1e24 cm^-2). The outer component is larger (50-100 pc) with slightly cooler dust (70-90 K). In addition, a much more extended inflowing component is required to also account for the OH doublet at 119 {\mu}m. Conclusions. The Compton-thick nature of the core makes it difficult to determine the nature of the buried power source, but the high surface brightness indicates that it is either an active galactic nucleus and/or a dense nuclear starburst. The high OH/H2O ratio in the nucleus indicates that ion-neutral chemistry induced by X-rays or cosmic-rays is important. Finally we find a lower limit to the 16O/18O ratio of 400 in the nuclear region, possibly indicating that the nuclear starburst is in an early evolutionary stage, or that it is fed through a molecular inflow of, at most, solar metallicity.Comment: 14 pages, 13 figures, Accepted for publication in Astronomy and Astrophysic

    Debt management in Brazil : evaluation of the Real Plan and challenges ahead

    Get PDF
    Brazil's domestic debt has posed two challenges to policymakers: it has grown very fast and, despite progress, remains extremely short in maturity. The authors analyze Brazil's experience with domestic public debt management, searching for policy prescriptions for the next few years. After briefly reviewing the recent history of the country's domestic debt, they decompose the large rise in federal bonded debt in 1995-98, searching for its macroeconomic causes. The main explanations: extremely high interest payments (caused by Brazil's weak fiscal stance and quasi-fixed exchange rate regime) and the accumulation of assets (especially obligations of Brazil's states). Simulations of the net debt path for the near future underscore the importance of a tighter fiscal stance to prevent the debt-to-GDP ratio from growing further. The authors'main policy advice is to foster and rely more on inflation-linked bonds--the least harmful way to lengthen debt maturity.Economic Theory&Research,Banks&Banking Reform,Public Sector Economics&Finance,Payment Systems&Infrastructure,Strategic Debt Management,Economic Theory&Research,Banks&Banking Reform,Strategic Debt Management,Public Sector Economics&Finance,Municipal Financial Management

    Unity of pomerons from gauge/string duality

    Full text link
    We develop a formalism where the hard and soft pomeron contributions to high energy scattering arise as leading Regge poles of a single kernel in holographic QCD. The kernel is obtained using effective field theory inspired by Regge theory of a 5-d string theory. It describes the exchange of higher spin fields in the graviton Regge trajectory that are dual to glueball states of twist two. For a specific holographic QCD model we describe Deep Inelastic Scattering in the Regge limit of low Bjorken x, finding good agreement with experimental data from HERA. The observed rise of the effective pomeron intercept, as the size of the probe decreases, is reproduced by considering the first four pomeron trajectories. In the case of soft probes, relevant to total cross sections, the leading hard pomeron trajectory is suppressed, such that in this kinematical region we reproduce an intercept of 1.09 compatible with the QCD soft pomeron data. In the spectral region of positive Maldelstam variable t the first two pomeron trajectories are consistent with current expectations for the glueball spectrum from lattice simulations

    Modeling the H2O submillimeter emission in extragalactic sources

    Get PDF
    Recent observational studies have shown that H2O emission at (rest) submillimeter wavelengths is ubiquitous in infrared galaxies, both in the local and in the early Universe, suggestive of far-infrared pumping of H2O by dust in warm regions. In this work, models are presented that show that (i) the highest-lying H2O lines (E_{upper}>400 K) are formed in very warm (T_{dust}>~90 K) regions and require high H2O columns (N_{H2O}>~3x10^{17} cm^{-2}), while lower lying lines can be efficiently excited with T_{dust}~45-75 K and N_{H2O}~(0.5-2)x10^{17} cm^{-2}; (ii) significant collisional excitation of the lowest lying (E_{upper}<200 K) levels, which enhances the overall L_{H2O}-L_{IR} ratios, is identified in sources where the ground-state para-H2O 1_{11}-0_{00} line is detected in emission; (iii) the H2O-to-infrared (8-1000 um) luminosity ratio is expected to decrease with increasing T_{dust} for all lines with E_{upper}<~300 K, as has recently been reported in a sample of LIRGs, but increases with T_{dust} for the highest lying H2O lines (E_{upper}>400 K); (iv) we find theoretical upper limits for L_{H2O}/L_{IR} in warm environments, owing to H2O line saturation; (v) individual models are presented for two very different prototypical galaxies, the Seyfert 2 galaxy NGC 1068 and the nearest ultraluminous infrared galaxy Arp 220, showing that the excited submillimeter H2O emission is dominated by far-infrared pumping in both cases; (vi) the L_{H2O}-L_{IR} correlation previously reported in observational studies indicates depletion or exhaustion time scales, t_{dep}=Sigma_{gas}/Sigma_{SFR}, of <~12 Myr for star-forming sources where lines up to E_{upper}=300 K are detected, in agreement with the values previously found for (U)LIRGs from HCN millimeter emission...Comment: 13 pages, 13 figure

    Impact of Power Allocation and Antenna Directivity in the Capacity of a Multiuser Cognitive Ad Hoc Network

    Get PDF
    This paper studies the benefits that power control and antenna directivity can bring to the capacity of a multiuser cognitive radio network. The main objective is to optimize the secondary network sum rate under the capacity constraint of the primary network. Exploiting location awareness, antenna directivity, and the power control capability, the cognitive radio ad hoc network can broaden its coverage and improve capacity. Computer simulations show that by employing the proposed method the system performance is significantly enhanced compared to conventional fixed power allocation

    Cancer therapeutic potential of combinatorial immuno- and vaso-modulatory interventions

    Get PDF
    Currently, most of the basic mechanisms governing tumor-immune system interactions, in combination with modulations of tumor-associated vasculature, are far from being completely understood. Here, we propose a mathematical model of vascularized tumor growth, where the main novelty is the modeling of the interplay between functional tumor vasculature and effector cell recruitment dynamics. Parameters are calibrated on the basis of different in vivo immunocompromised Rag1-/- and wild-type (WT) BALB/c murine tumor growth experiments. The model analysis supports that tumor vasculature normalization can be a plausible and effective strategy to treat cancer when combined with appropriate immuno-stimulations. We find that improved levels of functional tumor vasculature, potentially mediated by normalization or stress alleviation strategies, can provide beneficial outcomes in terms of tumor burden reduction and growth control. Normalization of tumor blood vessels opens a therapeutic window of opportunity to augment the antitumor immune responses, as well as to reduce the intratumoral immunosuppression and induced-hypoxia due to vascular abnormalities. The potential success of normalizing tumor-associated vasculature closely depends on the effector cell recruitment dynamics and tumor sizes. Furthermore, an arbitrary increase of initial effector cell concentration does not necessarily imply a better tumor control. We evidence the existence of an optimal concentration range of effector cells for tumor shrinkage. Based on these findings, we suggest a theory-driven therapeutic proposal that optimally combines immuno- and vaso-modulatory interventions

    Soft Pomeron in Holographic QCD

    Full text link
    We study the graviton Regge trajectory in Holographic QCD as a model for high energy scattering processes dominated by soft pomeron exchange. This is done by considering spin J fields from the closed string sector that are dual to glueball states of even spin and parity. In particular, we construct a model that governs the analytic continuation of the spin J field equation to the region of real J < 2, which includes the scattering domain of negative Maldelstam variable t. The model leads to approximately linear Regge trajectories and is compatible with the measured values of 1.08 for the intercept and 0.25 GeV2^{-2} for the slope of the soft pomeron. The intercept of the secondary pomeron trajectory is in the same region of the subleading trajectories, made of mesons, proposed by Donnachie and Landshoff, and should therefore be taken into account.Comment: 7 pages, 5 figures. V2 : The paper has been expanded to provide more details of the model and results. Added two new figures and two new references; corrected typo
    corecore