160 research outputs found

    Considerations on incompressibility in Linear Elasticity

    Get PDF
    The classical way to treat incompressible linear elastic materials is to use the inverse constitutive relationship (strain as a function of the stress), based on the compliance tensor, in place of the direct constitutive equation (stress as a function of strain), based on the elasticity (stiffness) tensor. This is because the elasticity tensor is affected by a diverging bulk modulus, requiring in order to allow the material to sustain any hydrostatic load, and is therefore not defined. In this work we show that there is a part of the elasticity tensor that can be saved also for incompressible materials, by filtering the components that deal with hydrostatic loads. The procedure is based on the treatment of incompressibility by means of the constant of isochoric motion, i.e. of conservation of volume, and fourth-order tensor algebra

    Efficient evaluation of the material response of tissues reinforced by statistically oriented fibres

    Get PDF
    For several classes of soft biological tissues, modelling complexity is in part due to the arrangement of the collagen fibres. In general, the arrangement of the fibres can be described by defining, at each point in the tissue, the structure tensor (i.e. the tensor product of the unit vector of the local fibre arrangement by itself) and a probability distribution of orientation. In this approach, assuming that the fibres do not interact with each other, the overall contribution of the collagen fibres to a given mechanical property of the tissue can be estimated by means of an averaging integral of the constitutive function describing the mechanical property at study over the set of all possible directions in space. Except for the particular case of fibre constitutive functions that are polynomial in the transversely isotropic invariants of the deformation, the averaging integral cannot be evaluated directly, in a single calculation because, in general, the integrand depends both on deformation and on fibre orientation in a non-separable way. The problem is thus, in a sense, analogous to that of solving the integral of a function of two variables, which cannot be split up into the product of two functions, each depending only on one of the variables. Although numerical schemes can be used to evaluate the integral at each deformation increment, this is computationally expensive. With the purpose of containing computational costs, this work proposes approximation methods that are based on the direct integrability of polynomial functions and that do not require the step-by-step evaluation of the averaging integrals. Three different methods are proposed: (a) a Taylor expansion of the fibre constitutive function in the transversely isotropic invariants of the deformation; (b) a Taylor expansion of the fibre constitutive function in the structure tensor; (c) for the case of a fibre constitutive function having a polynomial argument, an approximation in which the directional average of the constitutive function is replaced by the constitutive function evaluated at the directional average of the argument. Each of the proposed methods approximates the averaged constitutive function in such a way that it is multiplicatively decomposed into the product of a function of the deformation only and a function of the structure tensors only. In order to assess the accuracy of these methods, we evaluate the constitutive functions of the elastic potential and the Cauchy stress, for a biaxial test, under different conditions, i.e. different fibre distributions and different ratios of the nominal strains in the two directions. The results are then compared against those obtained for an averaging method available in the literature, as well as against the integration made at each increment of deformation

    The linear elasticity tensor of incompressibile materials

    Get PDF
    With a universally accepted abuse of terminology, materials having much larger stiffness for volumetric than for shear deformations are called incompressible. This work proposes two approaches for the evaluation of the correct form of the linear elasticity tensor of so-called incompressible materials, both stemming from non-linear theory. In the approach of strict incompressibility, one imposes the kinematical constraint of isochoric deformation. In the approach of quasi-incompressibility, which is often employed to enforce incompressibility in numerical applications such as the Finite Element Method, one instead assumes a decoupled form of the elastic potential (or strain energy), which is written as the sum of a function of the volumetric deformation only and a function of the distortional deformation only, and then imposes that the bulk modulus be much larger than all other moduli. The conditions which the elasticity tensor has to obey for both strict incompressibility and quasi-incompressibility have been derived, regardless of the material symmetry. The representation of the linear elasticity tensor for the quasi-incompressible case differs from that of the strictly incompressible case by one parameter, which can be conveniently chosen to be the bulk modulus. Some important symmetries have been studied in detail, showing that the linear elasticity tensors for the cases of isotropy, transverse isotropy and orthotropy are characterised by one, three and six independent parameters, respectively, for the case of strict incompressibility, and two, four and seven independent parameters, respectively, for the case of quasi-incompressibility, as opposed to the two, five and nine parameters, respectively, of the general compressible cas

    The Latin Leaflet

    Get PDF
    In the present work, we apply the asymptotic homogenization technique to the equations describing the dynamics of a heterogeneous material with evolving micro-structure, thereby obtaining a set of upscaled, effective equations. We consider the case in which the heterogeneous body comprises two hyperelastic materials and we assume that the evolution of their micro-structure occurs through the development of plastic-like distortions, the latter ones being accounted for by means of the Bilby–Kröner–Lee (BKL) decomposition. The asymptotic homogenization approach is applied simultaneously to the linear momentum balance law of the body and to the evolution law for the plastic-like distortions. Such evolution law models a stress-driven production of inelastic distortions, and stems from phenomenological observations done on cellular aggregates. The whole study is also framed within the limit of small elastic distortions, and provides a robust framework that can be readily generalized to growth and remodeling of nonlinear composites. Finally, we complete our theoretical model by performing numerical simulations
    • …
    corecore