12 research outputs found

    Relating spatiotemporal patterns of forest fires burned area and duration to diurnal land surface temperature anomalies

    No full text
    Forest fires are a major source of ecosystem disturbance. Vegetation reacts to meteorological factors contributing to fire danger by reducing stomatal conductance, thus leading to an increase of canopy temperature. The latter can be detected by remote sensing measurements in the thermal infrared as a deviation of observed land surface temperature (LST) from climatological values, that is as an LST anomaly. A relationship is thus expected between LST anomalies and forest fires burned area and duration. These two characteristics are indeed controlled by a large variety of both static and dynamic factors related to topography, land cover, climate, weather (including those affecting LST) and anthropic activity. To investigate the predicting capability of remote sensing measurements, rather than constructing a comprehensive model, it would be relevant to determine whether anomalies of LST affect the probability distributions of burned area and fire duration. This research approached the outlined knowledge gap through the analysis of a dataset of forest fires in Campania (Italy) covering years 2003-2011 against estimates of LST anomaly. An LST climatology was first computed from time series of daily Aqua-MODIS LST data (product MYD11A1, collection 6) over the longest available sequence of complete annual datasets (2003-2017), through the Harmonic Analysis of Time Series (HANTS) algorithm. HANTS was also used to create individual annual models of LST data, to minimize the effect of varying observation geometry and cloud contamination on LST estimates while retaining its seasonal variation. LST anomalies where thus quantified as the difference between LST annual models and LST climatology. Fire data were intersected with LST anomaly maps to associate each fire with the LST anomaly value observed at its position on the day previous to the event. Further to this step, the closest probability distribution function describing burned area and fire duration were identified against a selection of parametric models through the maximization of the Anderson-Darling goodness-of-fit. Parameters of the identified distributions conditional to LST anomaly where then determined along their confidence intervals. Results show that in the study area log-transformed burned area is described by a normal distribution, whereas log-transformed fire duration is closer to a generalized extreme value (GEV) distribution. The parameters of these distributions conditional to LST anomaly show clear trends with increasing LST anomaly; significance of this observation was verified through a likelihood ratio test. This confirmed that LST anomaly is a covariate of both burned area and fire duration. As a consequence, it was observed that conditional probabilities of extreme events appear to increase with increasing positive deviations of LST from its climatology values. This confirms the stated hypothesis that LST anomalies affect forest fires burned area and duration and highlights the informative content of time series of LST with respect to fire danger.Optical and Laser Remote Sensin

    Characterising fire hazard from temporal sequences of thermal infrared modis measurements

    No full text
    The objective of the present research was the characterisation of fire hazard using temporal sequences of land surface temperature (LST) derived from Terra-MODIS measurements. The investigation was based on a complete sequence of MODIS LST data from 2000 to 2006 on Campania (Italy) and on a data set of fires officially recorded in the area in the same period. Missing and/or cloudy LST data were reconstructed by means of the HANTS (Harmonic ANalysis of Time Series) algorithm applied to annual sequences of daily observations. The coefficients of the Fourier analysis were then assessed against spatial patterns of fire occurrence. The HANTS algorithm was also used on the complete LST data set to construct daily reference temperature maps against which to evaluate temperature anomalies and cumulated temperature anomalies. Results show that fires tend to occur in areas characterised by specific values of several Fourier coefficients with high significance, and to avoid the other areas. The amplitude of the second harmonic is the only Fourier coefficient dictating mean fire size. The mean fire size and the proportion of large fires correlate with both daily and cumulated thermal anomalies. However, the dynamic range of the predictions from cumulated anomalies is much larger, and thus maps of the latter are more effective in predicting fire hazard.Geoscience & Remote SensingCivil Engineering and Geoscience

    Mapping air temperature using time series analysis of LST: The SINTESI approach

    No full text
    This paper presents a new procedure to map time series of air temperature (Ta) at fine spatial resolution using time series analysis of satellite-derived land surface temperature (LST) observations. The method assumes that air temperature is known at a single (reference) location such as in gridded climate data with grid size of the order of 35 km × 35 km. The LST spatial and temporal pattern within a grid cell has been modelled by the pixel-wise ratios r (x,y,t) of the LST at any location to the LST at a reference location. A preliminary analysis of these patterns over a decade has demonstrated that their intra-annual variability is not negligible, with significant seasonality, even if it is stable throughout the years. The intra-annual variability has been modeled using Fourier series. We have evaluated the intra-annual variability by theoretically calculating the yearly evolution of LST (t) for a range of cases as a function of terrain, land cover and hydrological conditions. These calculations are used to interpret the observed LST (x,y,t) and r (x,y,t). The inter-annual variability has been evaluated by modeling each year of observations using Fourier series and evaluating the interannual variability of Fourier coefficients. Because of the negligible interannual variability of r (x,y,t), LST (x,y,t) can be reconstructed in periods of time different from the ones when LST observations are available. Time series of Ta are generated using the ratio r (x,y,t) and a linear regression between LST and Ta. Such linear regression is applied in two ways: (a) to estimate LST at any time from observations or forecasts of Ta at the reference location; (b) to estimate Ta from LST at any location. The results presented in this paper are based on the analysis of daily MODIS LST observations over the period 2001–2010. The Ta at the reference location was gridded data at a node of a 35 km × 35 km grid. Only one node was close to our study area and was used for the work presented here. The regression of Ta on LST was determined using concurrent observations of Ta at the four available weather stations in the Valle Telesina (Italy), our study area. The accuracy of our estimates is consistent with literature and with the combined accuracy of LST and Ta. We obtained comparable error statistics when applying our method to LST data during periods different but adjacent to the periods used to model of r (x,y,t). The method has also been evaluated against Ta observations for earlier periods of time (1984–1988), although available data are rather sparse in space and time. Slightly larger deviation were obtained. In all cases five days of averages from estimated and observed Ta were compared, giving a better accuracy.Geoscience & Remote SensingCivil Engineering and Geoscience

    Evaluation of SAR and Optical Data for Flood Delineation Using Supervised and Unsupervised Classification

    No full text
    Precise and accurate delineation of flooding areas with synthetic aperture radar (SAR) and multi-spectral (MS) data is challenging because flooded areas are inherently heterogeneous as emergent vegetation (EV) and turbid water (TW) are common. We addressed these challenges by developing and applying a new stepwise sequence of unsupervised and supervised classification methods using both SAR and MS data. The MS and SAR signatures of land and water targets in the study area were evaluated prior to the classification to identify the land and water classes that could be delineated. The delineation based on a simple thresholding method provided a satisfactory estimate of the total flooded area but did not perform well on heterogeneous surface water. To deal with the heterogeneity and fragmentation of water patches, a new unsupervised classification approach based on a combination of thresholding and segmentation (CThS) was developed. Since sandy areas and emergent vegetation could not be classified by the SAR-based unsupervised methods, supervised random forest (RF) classification was applied to a time series of SAR and co-event MS data, both combined and separated. The new stepwise approach was tested for determining the flood extent of two events in Italy. The results showed that all the classification methods applied to MS data outperformed the ones applied to SAR data. Although the supervised RF classification may lead to better accuracies, the CThS (unsupervised) method achieved precision and accuracy comparable to the RF, making it more appropriate for rapid flood mapping due to its ease of implementation.Geo-engineeringOptical and Laser Remote Sensin

    Comparing thresholding with machine learning classifiers for mapping complex water

    No full text
    Small reservoirs play an important role in mining, industries, and agriculture, but storage levels or stage changes are very dynamic. Accurate and up-to-date maps of surface water storage and distribution are invaluable for informing decisions relating to water security, flood monitoring, and water resources management. Satellite remote sensing is an effective way of monitoring the dynamics of surface waterbodies over large areas. The European Space Agency (ESA) has recently launched constellations of Sentinel-1 (S1) and Sentinel-2 (S2) satellites carrying C-band synthetic aperture radar (SAR) and a multispectral imaging radiometer, respectively. The constellations improve global coverage of remotely sensed imagery and enable the development of near real-time operational products. This unprecedented data availability leads to an urgent need for the application of fully automatic, feasible, and accurate retrieval methods for mapping and monitoring waterbodies. The mapping of waterbodies can take advantage of the synthesis of SAR and multispectral remote sensing data in order to increase classification accuracy. This study compares automatic thresholding to machine learning, when applied to delineate waterbodies with diverse spectral and spatial characteristics. Automatic thresholding was applied to near-concurrent normalized difference water index (NDWI) (generated from S2 optical imagery) and VH backscatter features (generated from S1 SAR data). Machine learning was applied to a comprehensive set of features derived from S1 and S2 data. During our field surveys, we observed that the waterbodies visited had different sizes and varying levels of turbidity, sedimentation, and eutrophication. Five machine learning algorithms (MLAs), namely decision tree (DT), k-nearest neighbour (k-NN), random forest (RF), and two implementations of the support vector machine (SVM) were considered. Several experiments were carried out to better understand the complexities involved in mapping spectrally and spatially complex waterbodies. It was found that the combination of multispectral indices with SAR data is highly beneficial for classifying complex waterbodies and that the proposed thresholding approach classified waterbodies with an overall classification accuracy of 89.3%. However, the varying concentrations of suspended sediments (turbidity), dissolved particles, and aquatic plants negatively affected the classification accuracies of the proposed method, whereas the MLAs (SVM in particular) were less sensitive to such variations. The main disadvantage of using MLAs for operational waterbody mapping is the requirement for suitable training samples, representing both water and non-water land covers. The dynamic nature of reservoirs (many reservoirs are depleted at least once a year) makes the re-use of training data unfeasible. The study found that aggregating (combining) the thresholding results of two SAR and multispectral features, namely the S1 VH polarisation and the S2 NDWI, respectively, provided better overall accuracies than when thresholding was applied to any of the individual features considered. The accuracies of this dual thresholding technique were comparable to those of machine learning and may thus offer a viable solution for automatic mapping of waterbodies.Optical and Laser Remote Sensin

    Generating high-temporal and spatial resolution tir image data

    No full text
    Remote sensing imagery to monitor global biophysical dynamics requires the availability of thermal infrared data at high temporal and spatial resolution because of the rapid development of crops during the growing season and the fragmentation of most agricultural landscapes. Conversely, no single sensor meets these combined requirements. Data fusion approaches offer an alternative to exploit observations from multiple sensors, providing data sets with better properties. A novel spatio-temporal data fusion model based on constrained algorithms denoted as multisensor multiresolution technique (MMT) was developed and applied to generate TIR synthetic image data at both temporal and spatial high resolution. Firstly, an adaptive radiance model is applied based on spectral unmixing analysis of. TIR radiance data at TOA (top of atmosphere) collected by MODIS daily 1-km and Landsat - TIRS 16-day sampled at 30-m resolution are used to generate synthetic daily radiance images at TOA at 30-m spatial resolution. The next step consists of unmixing the 30 m (now lower resolution) images using the information about their pixel land-cover composition from co-registered images at higher spatial resolution. In our case study, TIR synthesized data were unmixed to the Sentinel 2 MSI with 10 m resolution. The constrained unmixing preserves all the available radiometric information of the 30 m images and involves the optimization of the number of landcover classes and the size of the moving window for spatial unmixing. Results are still being evaluated, with particular attention for the quality of the data streams required to apply our approach.Optical and Laser Remote Sensin

    Supporting co-development phase of Nature Based Solution by combined use of Earth Observation and modeling

    No full text
    A protected natural area in the Emilia Romagna region, Northern Italy is threatened by hydro-meteorological hazards, particularly sea storms. In the last 50 years the northern part of the Bellocchio Park (Sacca Bellocchio II Nature Reserve, Site code EUAPP0072 - Ferrara, Italy) was interested by an intensive urbanization (Lido di Spina) with the realization of infrastructures, e.g. roads and residential settlements. This land use change led to the construction of embankments and to the conversion of wetlands. These modifications, in combination to even more frequent storm surge events increased coastal erosion. In addition, inland flooding caused by storm surges acts with the reduction of the lagoon and the increase of soil salinity. As an example, the last event occurred in December 2020 eroded a large portion of the Bellocchio beach. Co-design, co-development and deployment of NBS solutions to reduce storm surge risk in the Bellocchio Park is one of the objectives of the H2020 project OPEn-air laboRAtories for Nature baseD solUtions to Manage environmental risks (OPERANDUM). BellocchioBellochio park is in fact one of the 10 Open Air Laboratories (OAL) where the evidence of mitigation of hydro-meteorological risk by NBS will be demonstrated by the combination of different models, approaches and data.During the co-design process in the Bellocchio park, potential deployment locations of sand dunes have been identified in collaboration with local authorities devoted to the management of the natural area and to the coast defense (CB and ARSTePC-RER) and an environmental engineering consultant assisting Arpae (IRIS sas). Field visits were devoted to the analysis of the environmental features, strengths and weaknesses of candidate sites.This work aims to explore the usefulness of the combined use of multisource remote sensing and modeling in decision making during the co-design process of a NBS. The impacts of the most intense extreme storm surge events in the last 30 years have been documented by delineating flooded areas along the coast using Synthetic Aperture Radar and Multispectral image data. Coastal erosion has been also described by means of change detection analysis and very high resolution multispectral EO data. This screening has given a picture of areas at the risk, i.e. the area most likely to be affected by storm-surge events. Auxiliary data like Digital Terrain Models has been assimilated in a dedicated model to produce flood maps under different scenarios, i.e. different locations and size of NBS and different intensities of storm surge. The integrated analysis was helpful in defining the priority sites, among the ones defined by the stakeholders and engineers, in term of effectiveness for storm surge risk reduction.Optical and Laser Remote SensingGeo-engineerin

    A spectral unmixing method with ensemble estimation of endmembers: Application to flood mapping in the Caprivi floodplain

    Get PDF
    The Caprivi basin in Namibia has been affected by severe flooding in recent years resulting in deaths, displacements and destruction of infrastructure. The negative consequences of these floods have emphasized the need for timely, accurate and objective information about the extent and location of affected areas. Due to the high temporal variability of flood events, Earth Observation (EO) data at high revisit frequency is preferred for accurate flood monitoring. Currently, EO data has either high temporal or coarse spatial resolution. Accurate methodologies for the estimation and monitoring of flooding extent using coarse spatial resolution optical image data are needed in order to capture spatial details in heterogeneous areas such as Caprivi. The objective of this work was the retrieval of the fractional abundance of water (γw) by applying a new spectral indices-based unmixing algorithm to Medium Resolution Imaging Spectrometer Full Resolution (MERIS FR) data using a minimum number of spectral bands. These images are technically similar to the OLCI image data acquired by the Sentinel-3 satellite, which are to be systematically provided in the near future. The normalized difference wetness index (NDWI) was applied to delineate the water surface and combined with normalized difference vegetation index (NDVI) to account for emergent vegetation within the water bodies. The challenge to map flooded areas by applying spectral unmixing is the estimation of spectral endmembers, i.e., pure spectra of land cover features. In our study, we developed and applied a new unmixing method based on the use of an ensemble of spectral endmembers to capture and take into account spectral variability within each endmember. In our case study, forty realizations of the spectral endmembers gave a stable frequency distribution of γw. Quality of the flood map derived from the Envisat MERIS (MERIS) data was assessed against high (30 m) spatial resolution Landsat Thematic Mapper (TM) images on two different dates (17 April 2008 and 22 May 2009) during which floods occurred. The findings show that both the spatial and the frequency distribution of the γw extracted from the MERIS data were in good agreement with the high-resolution TM retrievals. The use of conventional linear unmixing, instead, applied using the entire available spectra for each image, resulted in relatively large differences between TM and MERIS retrievals.Optical and Laser Remote Sensin

    Monitoring of irrigation schemes by remote sensing: Phenology versus retrieval of biophysical variables

    No full text
    The appraisal of crop water requirements (CWR) is crucial for the management of water resources, especially in arid and semi-arid regions where irrigation represents the largest consumer of water, such as the Doukkala area, western Morocco. Simple and (semi) empirical approaches have been applied to estimate CWR: the first one is called Kc-NDVI method, based on the correlation between the Normalized Difference Vegetation Index (NDVI) and the crop coefficient (Kc); the second one is the analytical approach based on the direct application of the Penman-Monteith equation with reflectance-based estimates of canopy biophysical variables, such as surface albedo (r), leaf area index (LAI) and crop height (hc). A time series of high spatial resolution RapidEye (REIS), SPOT4 (HRVIR1) and Landsat 8 (OLI) images acquired during the 2012/2013 agricultural season has been used to assess the spatial and temporal variability of crop evapotranspiration ETc and biophysical variables. The validation using the dual crop coefficient approach (Kcb) showed that the satellite-based estimates of daily ETc were in good agreement with ground-based ETc, i.e., R2 = 0.75 and RMSE = 0.79 versus R2 = 0.73 and RMSE = 0.89 for the Kc-NDVI, respective of the analytical approach. The assessment of irrigation performance in terms of adequacy between water requirements and allocations showed that CWR were much larger than allocated surface water for the entire area, with this difference being small at the beginning of the growing season. Even smaller differences were observed between surface water allocations and Irrigation Water Requirements (IWR) throughout the irrigation season. Finally, surface water allocations were rather close to Net Irrigation Water Requirements (NIWR).Geoscience and Remote SensingCivil Engineering and Geoscience
    corecore