3 research outputs found

    Susceptible exposed infectious recovered-machine learning for COVID-19 prediction in Saudi Arabia

    Get PDF
    Susceptible exposed infectious recovered (SEIR) is among the epidemiological models used in forecasting the spread of disease in large populations. SEIR is a fitting model for coronavirus disease (COVID-19) spread prediction. Somehow, in its original form, SEIR could not measure the impact of lockdowns. So, in the SEIR equations system utilized in this study, a variable was included to evaluate the impact of varying levels of social distance on the transmission of COVID-19. Additionally, we applied artificial intelligence utilizing the deep neural network machine learning (ML) technique. On the initial spread data for Saudi Arabia that were available up to June 25th, 2021, this improved SEIR model was used. The study shows possible infection to around 3.1 million persons without lockdown in Saudi Arabia at the peak of spread, which lasts for about 3 months beginning from the lockdown date (March 21st). On the other hand, the Kingdom's current partial lockdown policy was estimated to cut the estimated number of infections to 0.5 million over nine months. The data shows that stricter lockdowns may successfully flatten the COVID-19 graph curve in Saudi Arabia. We successfully predicted the COVID-19 epidemic's peaks and sizes using our modified deep neural network (DNN) and SEIR model

    Comparison of specific segmentation methods used for copy move detection

    No full text
    In this digital age, the widespread use of digital images and the availability of image editors have made the credibility of images controversial. To confirm the credibility of digital images many image forgery detection types are arises, copy-move forgery is consisting of transforming any image by duplicating a part of the image, to add or hide existing objects. Several methods have been proposed in the literature to detect copy-move forgery, these methods use the key point-based and block-based to find the duplicated areas. However, the key point-based and block-based have a drawback of the ability to handle the smooth region. In addition, image segmentation plays a vital role in changing the representation of the image in a meaningful form for analysis. Hence, we execute a comparison study for segmentation based on two clustering algorithms (i.e., k-means and super pixel segmentation with density-based spatial clustering of applications with noise (DBSCAN)), the paper compares methods in term of the accuracy of detecting the forgery regions of digital images. K-means shows better performance compared with DBSCAN and with other techniques in the literature

    Learning trends in customer churn with rule-based and kernel methods

    No full text
    In the present article an attempt has been made to predict the occurrences of customers leaving or ‘churning’ a business enterprise and explain the possible causes for the customer churning. Three different algorithms are used to predict churn, viz. decision tree, support vector machine and rough set theory. While two are rule-based learning methods which lead to more interpretable results that might help the marketing division to retain or hasten cross-sell of customers, one of them is a kernel-based classification that separates the customers on a feature hyperplane. The nature of predictions and rules obtained from them are able to provide a choice between a more focused or more extensive program the company may wish to implement as part of its customer retention program
    corecore