86 research outputs found

    The myofibroblast, multiple origins for major roles in normal and pathological tissue repair

    Get PDF
    Myofibroblasts differentiate, invade and repair injured tissues by secreting and organizing the extracellular matrix and by developing contractile forces. When tissues are damaged, tissue homeostasis must be re-established, and repair mechanisms have to rapidly provide harmonious mechanical tissue organization, a process essentially supported by (myo)fibroblasts. Under physiological conditions, the secretory and contractile activities of myofibroblasts are terminated when the repair is complete (scar formation) but the functionality of the tissue is only rarely perfectly restored. At the end of the normal repair process, myofibroblasts disappear by apoptosis but in pathological situations, myofibroblasts likely remain leading to excessive scarring. Myofibroblasts originate from different precursor cells, the major contribution being from local recruitment of connective tissue fibroblasts. However, local mesenchymal stem cells, bone marrow-derived mesenchymal stem cells and cells derived from an epithelial-mesenchymal transition process, may represent alternative sources of myofibroblasts when local fibroblasts are not able to satisfy the requirement for these cells during repair. These diverse cell types probably contribute to the appearance of myofibroblast subpopulations which show specific biological properties and which are important to understand in order to develop new therapeutic strategies for treatment of fibrotic and scarring diseases

    Scar remodeling

    No full text
    International audienc

    Myofibroblasts in the liver: fibrosis, cirrhosis and the stromal reaction to liver cancers

    No full text
    International audienc

    The Myofibroblast: one function, multiple origins

    No full text
    International audienc

    Mesenchymal cells of the liver in health and disease

    No full text
    International audienc

    Tissue repair in liver

    No full text
    International audienc

    Cell and tissue mechanisms of tissue repair in central nervous system

    No full text
    International audienc

    Tumors : wounds that do not heal. Similarities between tumor troma generation and wound healing

    No full text
    International audienc

    Role of myofibroblasts during normal tissue repair and excessive scarring: Interest of their assessment in nephropathies

    Get PDF
    Following injury, tissue repair process takes place involving inflammation, granulation tissue formation and scar constitution. Granulation tissue develops from the connective tissue surrounding the damaged area and contains vessels, inflammatory cells, fibroblasts and myofibroblasts. Myofibroblasts play an important role in many tissue injuries and fibrocontractive diseases. The process of normal wound repair after tissue injury follows a closely regulated sequence including the activation and the proliferation of fibroblastic cells. In pathological situations, the normal resolution stages are abrogated and the proliferation of myofibroblasts continues, inducing excessive accumulation of extracellular matrix. The differentiation of fibroblastic cells into myofibroblasts is an early event in the development of tissue fibrosis. Myofibroblastic cells express smooth muscle cytoskeletal markers (asmooth muscle actin in particular) and participate actively in the production of extracellular matrix. The evaluation of myofibroblast differentiation in renal biopsies would be useful for histopathologists to appreciate the intensity of tissue injury and particularly to predict the long term outcome of some nephropathies. Immunohistochemical studies for a-smooth muscle actin should be made systematically in renal tissue biopsies. Myofibroblastic differentiation appears to play a significant role in the progression of renal failure and seems to be a useful marker of progressive disease
    • …
    corecore