284 research outputs found

    Oxidation resistance of ODS alloy PM2000 from 880°C to 1400°C

    Get PDF
    Oxidation resistance of ODS alloy PM2000 from 880°C to 1400°

    Experimental and mechanical characterizations of a lead free solder alloy for electronic devices

    Get PDF
    Electronic power modules devices are paramount components in the aeronautical,automotive and military applications. The solder layers are the most critical parts of the module and are usually subjected in their whole life to complex loading conditions. To improve the design task, realistic thermoelastoviscoplastic and lifetime prediction models which can describe efficiently the deformation-damage of the electrical device must be chosen carefully. Some of the most common behavior models are based on the separation between creep and plasticity deformations such as power law, Garofalo, Darveaux… So, to take into account the creep-plasticity interaction, the thermal cycling as well as the hardening-softening effects, unified viscoplastic models are increasingly being used to describe more efficiently the physical state of the material. We propose in this framework a survey of some unified viscoplastic models used in the electronic applications for the viscoplastic modeling of the solder as well as creep-fatigue life prediction rules. The models are used for the characterization of a SnAgCu solder and are briefly compared within tensile, creep data and stabilized responses

    Links Between Machining Parameters and Surface Integrity in Drilling Ni-Superalloy

    Get PDF
    In aerospace industry, the manufacturing of critical parts (high energy components) requires an important validation process to guarantee the quality of the produced parts, and thus their fatigue lifecycle. Globally, this validation consists in freezing the cutting conditions using metallurgical analysis or fatigue trials, and a test on the first article. This process is extremely complex and expensive. In this way establishing the correlation between the cutting conditions and the surface integrity will help us to optimize the manufacture of those parts. In this article, by the means of an experimental method, we define a domain of validation by combining the cutting conditions according to the classic criteria established by AFNOR E66-520 norm (Couple-Tool-Material) and the criteria of surface integrity for the drilling of a Nickel-base superalloy. The experimental device consists in drilling a Ø15.5 mm hole on a 3-axis milling centre instrumented by a 4 components Kistler dynamometer (Fx, Fy, Fz and Mz), a spindle power sensor “Watt-pilote” and three accelerometers placed following the directions X, Y and Z. Scanning Electron Microscopy (SEM) observations, micro-hardness tests and topographic measurements with an optical profilometer, are carried out to characterize the metallurgical state of the holes manufactured. Finally, correlations were respectively made between the cutting conditions, the recorded signals and the metallurgical state of the holes

    Effects of the Unified Viscoplastic Formulation and Temperature Terms on the Thermomechanical Behavior of Soldering Materials

    Get PDF
    Solder materials are critical packaging compounds and due to usually weakest melting temperature among packaging constitutive materials, thus, they are frequently subjected to a multitude of physical phenomena: creep, fatigue and combined hardening effects. The complexity and interaction of such factors must be considered in suitable way in the mechanical behavior modeling using the appropriate material behavior laws. The choice of the mechanical model depends on several factors such as the complexity of constitutive equations to be integrated, the availability and suitability of implementation in the FE codes, the number of parameters to be identified, the capability of the model to represent the most common physical features of the material… Following these observations and in order to deal with these critical remarks, comparisons between the most common unified viscoplastic models should be done in the local and finite element levels for the decision upon the most efficient model. That is the aim of this paper with application to a tin based solder token as the test material

    Caractérisation expérimentale du comportement mécanique d’assemblage haute température pour l’électronique de puissance

    Get PDF
    Ce papier a pour objectif l’étude expérimentale du comportement mécanique de deux types de connexions haute température mises en œuvre pour l’assemblage de composants d’électronique de puissance : une jonction réalisée par brasage en phase liquide transitoire (TLPB) d’Ag-In et une autre par brasage d’un eutectique Au88Ge12. Les connexions réalisées à partir d’inserts de cuivre sont caractérisées mécaniquement au moyen d’essais de cisaillement. Une analyse de la microstructure des jonctions en coupe et des faciès de rupture des deux connexions a également été menée. L’ensemble des essais et des analyses permettent de comparer le comportement mécanique et la faisabilité des deux connectiques d’électronique de puissance

    Development of nickel phosphorus coatings containing micro particles of talc phyllosilicates

    Get PDF
    The present work aims to characterized nickel phosphorus coatings co-deposited with talc particles on steel. The NiP-talc composite deposits were developed to serve as hard coatings with a lubricating effect at 600 C. This process, which is free of hexavalent chromium, could provide a reliable substitute for the electrodeposition of hard chromium coating used in industrial applications. Local responses to static and dynamic mechanical loading have been obtained by nano- and microhardness, microtensile and nanoscratch testing. The hardness and stiffness values slightly decrease when the amount of talc increases for untreated coatings. In contrast, a 420 C heat treatment leads to high hardness and Young’s modulus values due to crystallization. Moreover, a 600 C heat treatment lowers these values through overageing. A 420 C heat treatment greatly improves the adherence and the cohesion of the coatings containing talc

    Structure, morphology and mechanical properties of electrodeposited composite coatings Ni–P/SiC

    Get PDF
    Physical properties of the NiP/SiC deposits are discussed according to the electroplating parameters and heat treatments. The insertion of silicon carbide in the coatings does not modify their rigidity (E = 230 GPa), increases their hardness slightly (50 Vickers) and decreases the residual stresses in the coatings. The phosphorus content has a major effect on the structure and the physical properties. Indeed, the insertion of phosphorus into the deposits generates a grain size reduction or even an amorphisation which results in morphological modifications observed by AFM. In parallel a very important hardening is associated with incorporation of phosphorus: hardness is multiplied by 3 to reach 600 HV0.1. The deposits tend to become crystalline following the heat treatments. With 420 °C, the precipitation of a Ni3P phase which distorts the crystal lattice is observed, increasing the hardness of the deposits

    Viscoplastic behavior of diamond die attach subjected to high temperature conditions

    Get PDF
    In power electronic applications, diamond based semi-conductors appears to be a new way to widely increase the capabilities of power electronic converters. The main prospective expected is an increasing in system integration and power capabilities. The Diamonix project concerns the elaboration of a single-crystal diamond substrate with electronic quality and its associated packaging. The designed structure has to resist to temperatures varying between -50°C and +300°C. This paper deals with an experimental and numerical study of the diamond die attach solution. The development of a packaging for diamond component relies in particular on a specific choice of solder’s alloys for the junction die/substrate. To carry out this junction, AuGe and AlSi eutectic alloys were chosen and characterized; the choice of these two kinds of solders i.e. AuGe and AlSi is motivated by the practical elaboration process and the restrictions of hazardous substances (RoHS). The first solder has a melting temperature of 356°C; the second has a higher melting point of 577°C. In this paper, we present some numerical results obtained from FE simulations of two 2D configurations of simplified electronic packaging. The power electronic packaging is composed of a diamond die and a copper metallized Si3N4 ceramic substrate which are brazed together with either AuGe or AlSi solder alloy. To predict the thermomechanical behavior of the solders, a particular constitutive behavior law was implemented as a User MATerial subroutine which is based on a viscoplastic unified McDowell formulation, coupled with porous damage equations. The mechanical law can describe precisely the viscoplastic damage phenomenon of solder subjected to high thermal cycling and to optimize the thermo-mechanical modeling for advanced package developmen

    Combined Kelvin probe force microscopy and secondary ion mass spectrometry for hydrogen detection in corroded 2024 aluminium alloy

    Get PDF
    The capability of Kelvin probe force microscopy (KFM) to detect and locate hydrogen in corroded 2024 aluminium alloy was demonstrated. Hydrogen was introduced inside the 2024 alloy following a cyclic corrosion test consisting of cycles of immersion in 1 M NaCl solution followed by exposure to air at -20 °C. The combination of scanning electron microscopy, secondary ion mass spectrometry and KFM demonstrated that the grain and subgrain boundaries were preferential pathways for the short-circuit diffusion of hydrogen but also acted as a source of hydrogen diffusion in the lattice over distances of up to ten microns with non-negligible desorption when exposed to air at room temperature for 24 h

    Investigation of Kelvin probe force microscopy efficiency for the detection of hydrogen ingress by cathodic charging in an aluminium alloy

    Get PDF
    Detecting and locating absorbed hydrogen in aluminium alloys is necessary for evaluating the contribution of hydrogen embrittlement to the degradation of the mechanical properties for corroded or cathodically hydrogen-charged samples. The capability of Kelvin probe force microscopy (KFM) to overcome this issue was demonstrated. Aluminium alloy samples were hydrogenated by cathodic polarisation in molten salts (KHSO4/NaHSO4.H2O). The presence of absorbed hydrogen was revealed; the affected zone depth was measured by secondary ion mass spectroscopy (SIMS) analyses and KFM measurements
    corecore