1,077 research outputs found

    ТЕОРЕТИЧЕСКИЙ РАСЧЕТ ЗНАЧЕНИЯ ПАРАМЕТРА Т. КАРМАНА

    Get PDF
    The article considers various approaches to assessing the physical essence of the von Karman constant characterizing the vertical distribution of the flow velocity. On the one hand, the von Karman constant is a proportionality coefficient between the length of the mixing length and the depth; on the other hand, it characterizes the tilt angle of the vertical velocity profile. It is considered that this parameter is universal, that means it is constant as long as the averaged velocity distribution is constant. However, depending on estimation way of this constant, its values under the same conditions may differ to 2 orders. Two methods for estimating the von Karman constant are considered. In the first case, determination of the von Karman constant is on the grounds of direct measurements of the maximum and average flow velocities, depth and slope of the water surface in a particular area. Propagation of the obtained value to other objects will lead to errors. In the second case, the parameter is defined as a function of the coefficient of hydraulic friction. The authors showed that the von Karman constant is a function of the coefficient of turbulent exchange (viscosity) and indirectly is a function of the depth. As a result of the calculations, it was shown that the maximum values of the von Karman constant observed on the bottom. Additionally, the authors propose a new version of the calculation of the von Karman constant through the tension shift for a turbulent flow. It is concluded that since for velocities <1 meter per second the changes in the von Karman constant values from 0.27 to 0.38 the maximum velocity with variation do not exceed 3%, which fits into the accuracy of the velocity measurements, it is practically impossible to estimate the value of von Karman constant by first method for flat rivers even with multiple measurements with standard hydrometric equipment. Keywords: the von Karman constant; coefficient of turbulent exchange (viscosity); Reynolds number; coefficient of hydraulic friction; velocity distribution diagram; turbulent modeВ статье рассмотрены различные подходы к оценке физической сущности параметра Т. Кармана, характеризующего распределение скорости потока по вертикали. С одной стороны, параметр Т. Кармана является коэффициентом пропорциональности между длиной пути перемешивания и глубиной, с другой – характеризует угол наклона вертикального профиля скорости. Считается, что данный параметр является универсальным, то есть константой при условии, что осредненное распределение скоростей является постоянным. Однако, в зависимости от того, каким образом мы определяем величину данного параметра, различие в его значениях доходят до 2 порядков. Рассмотрены два способа оценки параметра Т. Кармана. В первом случае параметр определяется на основе прямых измерений максимальной и средней скоростей движения потока, глубины и уклона водной поверхности на конкретном участке. Распространение полученного значения на другие створы приведет к ошибкам. Во втором случае параметр определяется как функция коэффициента гидравлического трения. Авторами показано, что параметр Т. Кармана является функцией коэффициента турбулентного обмена (вязкости) и опосредованно является функцией глубины потока. В результате расчетов показано, что в придонной части значения параметра Т. Кармана максимальны. Дополнительно в статье предложен новый вариант расчета параметра Т. Кармана через величину касательного напряжения для турбулентного потока. Сделан вывод, что поскольку для скоростей <1 м/с при изменении значений параметра Т. Кармана от 0,27 до 0,38 изменения максимальной скорости не превышают 3%, что укладывается в погрешность измерений скорости вертушкой, то практически оценить величину параметра Т. Кармана на основании измеренных скоростей для равнинных рек даже при множественных измерениях стандартным гидрометрическим оборудованием невозможно.   Литература Барышников Н.Б., Попов И.В. Динамика русловых потоков и русловые процессы. Л.: Гидрометеоиздат, 1988. 454 с. Большаков В.А., Константинов Ю.М., Попов В.Н. Справочник по гидравлике. К.: Вища школа, 1977. 280 с. Виноградов А.Ю., Кадацкая М.М., Бирман А.Р., Виноградова Т.А., Обязов В.А., Кацадзе В.А., Угрюмов С.А., Бачериков И.В., Коваленко Т.В., Хвалев С.В., Парфенов Е.А. Расчёт неразмывающих скоростей водного потока на высоте верхней границы пограничного слоя // Resources and Technology. 2019. Т. 16. № 3. С. 44-61. DOI: 10.15393/j2.art.2019.4782 Гольдштик М.А., Кутателадзе С.С. Вычисление константы пристенной турбулентности // Доклады академии наук СССР. 1969. Т. 185. № 3. С. 535-537. Гришанин К.В. Динамика русловых потоков. Л.: Гидрометеоиздат, 1969. 428 с. Дейли Дж., Харлеман Д. Механика жидкости / Пер. с англ. под ред. О.Ф. Васильева. М.: Энергия, 1971. 480 с. Железняков Г.В. Пропускная способность русел каналов и рек. Л.: Гидрометеоиздат, 1981. 308 с. Железняков Г.В. Теория гидрометрии / 2-е изд. Л.: Гидрометеоиздат, 1976. 344 с. Лаптев А.Г., Фарахов Т.М. Математические модели и расчет гидродинамических характеристик пограничного слоя [Электронный ресурс] // Научный журнал КубГАУ. 2012. №82(08). URL: http://ej.kubagro.ru/2012/08/pdf/52.pdf (дата обращения: 13.04.2019) Монин А.С., Яглом А.М. Статистическая гидромеханика: в 2 т. Т. 1. Механика турбулентности. М.: Наука, 1965. 639 с. Гидротехнические сооружения / Под общ. ред. В.П. Недрига. М.: Стройиздат, 1983. 543 с. Одишария Г.Э., Точигин А.А. Прикладная гидродинамика газожидкостных смесей. М.: Всерос. НИИ природ. газов и газовых технологий; Иваново: Иванов. гос. энергет. ун-т, 1998. 397 с. Скребков Г.П., Федоров Н.А. Интегральная и локальная величины коэффициентов турбулентного профиля скорости // Вестник МГСУ. 2013. №4. С. 201-208. DOI: 10.22227/1997-0935.2013.4.201-208 Шлихтинг Г. Теория пограничного слоя / Пер. с нем. Г.А. Вольперта; под ред. Л.Г. Лойцянского. М.: Наука, 1974. 713 с. Штеренлихт Д.В. Гидравлика: учебник для вузов. М.: Энергоатомиздат, 1984. 640 с. Akinlade O.G., Bergstrom D.J. Effect of surface roughness on the coefficients of a power law for the mean velocity in a turbulent boundary layer // Journal of Turbulence. 2007. V. 8. Art. N18. DOI: 10.1080/14685240701317245 Hall C.W. Laws and Models: Science, Engineering and Technology. Boca Raton: CRC Press LLC, 2000. 535 p. Jiménez J., Hoyas S., Simens M.P., Mizuno Y. Turbulent boundary layers and channels at moderate Reynolds numbers // Journal of Fluid Mechanics. 2010. V. 657. P. 335-360. DOI: 10.1017/S002211201000137

    СЕЛИ И КАРЧЕХОДЫ НА РАВНИННЫХ ТЕРРИТОРИЯХ

    Get PDF
    Traditionally, it is believed that debris-flows are formed only in mountainous areas, and their occurrence in flat areas is impossible. These ideas about the conditions for the development and spread of debris-flow processes are reflected in the Russian Technical Regulations that determine the composition of engineering surveys for construction. In these Regulations, debris-flow and potentially debris-flow areas are identified only in mountainous areas, while flat and hilly areas are shown as non-debris-flow. Debris-flow risks are not calculated for flat and hilly areas both in Russia and in other countries. The vulnerability of objects, structures and territories to the impact of debris-flows is not taken into account either in the development of urban planning documentation, or in the design of objects and structures, or in the development of recreational areas. When designing hydraulic engineering and other structures, the loads created by water flows with a density of up to 1000 kg/m3 are calculated, and not by debris-flows, mudflows and suspended streams with a density of 1100-2000 kg/m3. The results of the research show that the presence, even in local areas, of slopes exceeding (depending on the type of rock) 5°-10°, creates the possibility of incoherent debris-flows (suspended streams) on lowland small rivers. For example, the number of such small rivers in the Novgorod region is 20%. The presence of even local sections with slopes of more than 100‰ on flat rivers creates conditions for the formation of debris-flows and mudflows. Debris-flows and mudflows are formed on plains not only in ravines, but also in the beds of permanent and temporary small watercourses and in erosion furrows on the slopes of hills and river terraces. The density of debris-flows and mudflows of small volumes formed in erosion cuts on the slopes of hills and river terraces can reach 2000 kg/m3, and sediment flows passing through the beds of small rivers-1100-1200 kg/m3. Submerged tree drifting on small watercourses in its composition are not water streams, and the incoherent debris flows.Традиционно считается, что сели формируются только в горных районах, а их возникновение на равнинных территориях невозможно. Эти представления об условиях развития и распространения селевых процессов отражены в Российских нормативных документах, определяющих состав инженерных изысканий для строительства: в них как селеопасные и потенциально селеопасные районы выделены только горные территории, а равнинные и холмистые территории показаны как не селеопасные. Таким образом, селевые риски при проектно-изыскательских работах как на большей части территории России, так и в мировой практике, не учитываются и соответственно уязвимость объектов, сооружений и территорий для селей не оценивается ни при разработке градостроительной документации, ни при проектировании объектов и сооружений, ни при развитии рекреационных территорий. Так, при проектировании гидротехнических сооружений рассчитываются нагрузки, создаваемые водными потоками плотностью до 1000 кг/м3, а не грязекаменными, грязевыми и наносоводными потоками плотностью 1100-2000 кг/м3. Результаты проведённых исследований показывают, что наличие, даже на локальных участках, уклонов, превышающих (в зависимости от типа горной породы) 5°-10°, создаёт возможность возникновения на равнинных малых реках несвязных селей (наносоводных потоков). Например, количество таких малых рек в Новгородской области составляет 20%. Наличие на равнинных реках даже локальных участков с уклонами более 100‰, создаёт условия для формирования грязевых и грязекаменных селей. Грязевые и грязекаменные сели малого объёма формируются на равнинных территориях не только в оврагах, но и в руслах постоянных и временных малых водотоков и в эрозионных бороздах на склонах холмов и речных террас. Плотность грязекаменных и грязевых селей небольших объёмов, формирующихся в эрозионных врезах на склонах холмов и речных террас может достигать 2000 кг/м3, наносоводных потоков, проходящих по руслам малых рек, – 1100-1200 кг/м3. Карчеходы, проходящие по мелким водотокам по своему составу являются не водными потоками, а несвязными селями. ЛитератураАйзенберг М.М., Грачева Л.Н. Селевые потоки на юге и юго-западе европейской территории Советского Союза // Труды Украинского научно-исследовательского гидрометео-рологического института. 1975. Вып. 140. С. 148-161. Айзенберг М.М., Семенихина А.С. К природе антропогенных селей // Труды Украинского научно-исследовательского гидрометео-рологического института. 1978. Вып. 168. С. 109-114.Атлас природных и техногенных опасностей и рисков чрезвычайных ситуаций Российской Федерации / Под общ. ред. С.К. Шойгу. М.: Дизайн. Информация. Картография, 2010. 696 с.Бодров В.А. Проблема борьбы с эрозией почв в районе Каневских дислокаций // Материалы Всесоюзного совещания по борьбе с эрозией почв, (г. Москва, 12-16 декабря 1955 г.). М.: Сельхозгиз, 1957. С. 369-378.Брылев В.А. Современные геодинамические процессы на территории Волгоградской агломерации // Сборник материалов 13-го пленарного межвузовского координационного совещания по проблеме эрозионных, русловых и устьевых процессов (г. Псков, 13-15 октября 1998 г.). Псков: ПГУ, 1998. С. 178-179.Виноградов Ю.Б. Этюды о селевых потоках. Л.: Гидрометеоиздат, 1980. 143 с.Виноградов А.Ю., Виноградова Т.А. Селевые явления на равнинных территориях (на примере Новгородской области) // Материалы IV Международной конференции «Селевые потоки: катастрофы, риск, прогноз, защита» (г. Иркутск, 6-10 сентября 2016 г.) Иркутск: Изд-во Института географии им. В.Б. Сочавы СО РАН, 2016. С. 50-54.Виноградов А.Ю., Кадацкая М.М., Бирман А.Р., Виноградова Т.А., Обязов В.А., Кацадзе В.А., Угрюмов С.А., Бачериков И.В., Коваленко Т.В., Хвалев С.В., Парфенов Е.А. Расчёт неразмывающих скоростей водного потока на высоте верхней границы пограничного слоя // Resources and Technology. 2019. Т. 16. №3. С. 44-61. DOI: 10.15393/j2.art.2019.4782.Вольфцун И.Б., Крестовский О.И. Катастрофический ливневой паводок на Валдае// Метеорология и гидрология. 1961. №1. С. 40-43.География овражной эрозии / Под ред. Е.Ф. Зориной. М.: Изд-во МГУ, 2006. 323 с.Домогашев В.Н. Проектирование мостовых переходов в условиях карчехода // Тезисы докладов и сообщений региональной научно-практической конференции Основные направления повышения эффективности и качества капитального строительства в Красноярском крае (г. Красноярск, 10-12 июня 1982 г.). Часть III. Красноярск, 1982. С. 12-13.Дрозд Н.И. Грязевые потоки в овражных районах Украины // Материалы V Всесоюзного совещания по изучению селевых потоков и мер борьбы с ними. Баку: Издательство Академии наук АзССР, 1962. С. 94-98.Ещенко Н.Д., Кутовой С.С., Шпак И.С. Влияние хозяйственной деятельности на заиление речных долин // Влияние хозяйственной деятельности на водный баланс / Под ред. С.М. Перехрест. Киев, 1969. С. 87-104.Казаков Н.А., Генсиоровский Ю.В. Паводки на малых реках низкогорья Ююжного и Среднего Сахалина как несвязные селевые потоки // Труды Второй конференции «Селевые потоки: катастрофы, риск, прогноз, защита», посвященной 100-летию С.М. Флейшмана (г. Москва, 17-19 октября 2012 г.). М.: Географический факультет МГУ, 2012. С. 49-50.Козменко А.С. Борьба с эрозией почв на сельскохозяйственных угодьях. М.: Сельхозгиздат, 1963. 208 с.Лапердин В.К., Качура Р.А. Геодинамика опасных процессов в зонах природно-техногенных комплексов Восточной Сибири. Иркутск: Институт земной коры СО РАН, 2010. 311 с.Леваднюк А.Т. Особенности развития овражной эрозии в оползневых районах Молдавии // Тезисы докладов Четвертой Всесоюзной научной конференции «Закономерности проявления эрозионных и русловых процессов в различных природных условиях» (г. Москва, 24-26 декабря 1987 г.). М.: МГУ, 1987. С. 155.Любимов Б.П. Селевые потоки в оврагах на Сатинском полигоне МГУ // Доклады и сообщения 16-ого пленарного межвузовского координационного совещания по проблеме эрозионных, русловых и устьевых процессов (г. Санкт-Петербург, 2-4 октября 2001 г.). СПб.: МГУ-СПбГУВК, 2001. С. 150-151.Любимов Б.П., Перов В.Ф. Селевые потоки в оврагах равнин // Вестник МГУ. Серия 5. География. 2001. № 3. С. 56-62.Перов В.Ф. Селевые явления на территории СССР // Итоги науки и техники. Серия Гидрология суши. Том 7. М.: ВИНИТИ, 1989. 147 с.Перов В.Ф. Селеведение: учебное пособие. М.: МГУ, 2012. 272 с.Прока В.Е. Будущее природы агропромышленного района. Кишинев: Штиинца, 1983. 237 с.Прока В.Е., Яковлев В.М. О селевых явлениях на территории Молдавии // Охрана природы Молдавии. 1969. Выпуск 7. С. 15-23.Сальников П.И. Оврагообразование, селевые паводки и песчаные заносы в городах Забайкалья и борьба с ними // Записки Забайкальского отдела Всесоюзного географического общества СССР. 1963. Выпуск 22. С. 77-92.Сластихин В.В. Селевые потоки Молдавского Приднестровья // Материалы Первой Научной конференции по проблемам развития и размещения производит. сил Приднестровья «Проблемы использования природных богатств и охраны природы». Львов: Каменяр, 1969. С. 30-32.Сластихин В.В. Процесс эрозии на селеактивных водосборах в Молдавии // Тезисы докладов Четвертой Всесоюзной научной конференции «Закономерности проявления эрозионных и русловых процессов в различных природных условиях» (г. Москва, 24-26 декабря 1987 г.). М.: МГУ, 1987. С. 136-137.Черноморец С.С. Селевые исследования в России и странах бывшего Советского Союза: история и перспективы // Труды Международной электронной конференции «Изменения природной среды на рубеже тысячелетий». Тбилиси-Москва, 2006. С. 67-75.Швебс Г.И. Селевые явления в негорных районах Украины // Метеорология, климатология и гидрология. 1969. Выпуск 5. С. 181-186.Яблонский В.В. Сель в Киеве // Свет. Природа и человек. 1991. № 7. С. 32-33. &nbsp

    ГИДРОЛОГИЯ: СООТНОШЕНИЕ ТЕОРЕТИЧЕСКОЙ И ПРИКЛАДНОЙ ГИДРОЛОГИИ

    Get PDF
    The proposed article relates to the philosophy of a specific scientific discipline – hydrology. It is based on the ideology of Yuri Borisovich Vinogradov, whose students and followers we are. The article is based on his conversations, records, a huge heritage. The aim of this study is an attempt to draw attention to such an important and relevant issue as the correspondence of modern theoretical developments in hydrology and their application in practical hydrology. It is shown that at this stage, hydrology is seen more as a technology than a science. A positive image of the results of research in the field of hydrology creates a technological rather than professional level of performance. The paper assesses the state of modern applied hydrology; new concepts of applied hydrology. The tasks of operational hydrology, forecasting hydrological phenomena and processes are considered. The main questions of hydrology are posed - calculations of the formation of river flow. New generation hydrology should prevail over traditional hydrology. This should be manifested in the achievement of the true adequacy of our modeling systems to nature. The danger of simplification of natural phenomena and processes, which is traditionally used in calculation methods in hydrology, is considered. The article addresses general issues regarding the future of hydrology and the hydrometeorological observation system. The first feature of the new system will be the use of fundamentally new devices and installations. These devices should make a revolution in the hydrometeorological fundamental and applied science. Give greater accuracy to measurements of observed hydrometeorological parameters in time and space. Now, to simulate runoff formation, the calculated time interval is equal to days. In the future, observations should be made at intervals of averaging from minutes to hours.Предлагаемая статья относится к разделу философии конкретной научной дисциплины – гидрологии. Она опирается на идеологию Юрия Борисовича Виноградова, учениками и последователями которого мы являемся. Статья составлена по его беседам, записям, огромному, ещё не до конца рассмотренному и обработанному наследию. Целью работы является попытка обратить внимание на такой важный и актуальный вопрос, как соотношение уровней наших теоретических разработок в гидрологии и их практического применения. В статье показано, что на данном этапе гидрология больше рассматривается как технология, чем как наука. Положительный имидж результатам исследовательских работ в области гидрологии создаёт технологический, а не профессиональный уровень исполнения. В работе рассмотрены методологические и экспериментальные аспекты «традиционной гидрологии» и «гидрологии нового поколения»; дана оценка состояния современной прикладной гидрологии; рассмотрены новые концепции прикладной гидрологии. Также в статье рассмотрены задачи оперативной гидрологии, прогнозирования гидрологических явлений и процессов, поставлены главные вопросы гидрологии – расчёты формирования речного стока. Гидрология нового поколения должна повсеместно возобладать над традиционной гидрологией 20-го века. Это должно проявиться в достижении подлинной адекватности наших моделирующих систем природе. Рассмотрена опасность неадекватного упрощения некоторых природных явлений и процессов, которое традиционно используется в расчётных методах в гидрологии. Кроме того, в статье затронуты общие вопросы, касающиеся будущего гидрологии и системы гидрометеорологических наблюдений. Первой особенностью новой системы будет использование в ней принципиально новых приборов и установок, которые должны совершить переворот в гидрометеорологической фундаментальной и прикладной науке, позволяющих иное разрешение наблюдаемых гидрометеорологических полей во времени и пространстве. Это касается и традиционных, и новых способов измерений. Если сейчас для массового моделирования формирования стока, осуществляемого по стандартным данным наблюдений сети гидрометеорологических станций, расчётный интервал времени равен суткам, то в будущем наблюдения должны проводиться с интервалами суммирования или осреднения от минут до часов

    ВЛИЯНИЕ ЛЕСА НА СНЕГОНАКОПЛЕНИЕ (ПО ДАННЫМ ПОДМОСКОВНОЙ СТОКОВОЙ СТАНЦИИ

    Get PDF
    Engineering culverts and drainage structures are designed when solving land reclamation problems and road construction. Since the main parameter in calculating the dimensions of bridge or pipe holes or sections of drainage ditches is the extreme flow rate, its correct determination has a great influence on design decisions. Extreme flow rates on most rivers occur during the spring flood, so to correctly determine this flow rate, it is important to understand the conditions of flood formation. In the mixed forest zone of the European part of Russia, with drainage areas of more than 100 km2, the flood of the spring flood almost always exceeds the storm flood in magnitude. Its volume is determined by the water reserves in the snow cover at the beginning of snow melting, and its consumption is determined by the amicability of the spring flood. Therefore, the study of the conditions for the formation of snow cover, its distribution over the river basin is of great scientific and practical interest. The accumulation of snow reserves strongly depends on the degree of coverage of the catchment area with forest, especially in the zones of taiga, mixed forests and forest-steppe. The main runoff-forming characteristic of the snow cover is the maximum snow storage - the total amount of water in solid and liquid form contained in the snow cover at the time of its maximum accumulation. For example, for the forest and field catchments of the Moscow Region runoff station, the maximum snow reserves in individual years differ in moisture content up to 60%. The redistribution of snow reserves in favor of the forest leads to later snow melting and, as a consequence, spreading of the peak of the spring flood. The maximum moisture reserves in snow in the forest exceed those in the open area according to long-term data by an average of 10%, however, the coefficient taking into account the influence of the forest on the runoff takes values of 30–40%, which is confirmed by observation data. The article notes the difference between the flood friendship coefficients calculated according to its physical meaning and determined from the data of analogous rivers in the opposite wayИнженерные водопропускные и водоотводные сооружения проектируются при решении мелиоративных задач и строительстве дорог. Поскольку основным параметром для расчетов размеров мостовых или трубных отверстий, или сечений водоотводных мелиоративных канав является экстремальный расход, его правильное определение оказывает большое влияние на принятие проектных решений. Экстремальные расходы на большинстве рек проходят во время весеннего половодья, поэтому для правильного определения этого расхода важно понимать условия формирования половодий. В зоне смешанных лесов Европейской части России при площадях водосбора, превышающих 100 км2, весеннее половодье практически всегда по величине превышает ливневой паводок. Объем половодья определяется запасами воды в снежном покрове на начало снеготаяния, а максимальный расход – дружностью весеннего половодья. Поэтому изучение условий формирования снежного покрова, его распределения по бассейну реки представляет большой научный и практический интерес. Накопление снегозапасов сильно зависит от степени покрытия территории водосбора лесом, особенно в зонах тайги, смешанных лесов и лесостепной зоне. Основной стокоформирующей характеристикой снежного покрова являются максимальные снегозапасы – общее количество воды в твердом и жидком виде, содержащееся в снежном покрове на момент максимального его накопления. Например, для лесного и полевого водосборов Подмосковной стоковой станции максимальные снегозапасы в отдельные годы имеют различие во влагосодержании до 60%. Перераспределение снеговых запасов в пользу леса приводит к более позднему снеготаянию и, как следствие, уменьшению коэффициента дружности весеннего половодья. Максимальные влагозапасы в снегу в лесу превышают таковые на открытой местности по многолетним данным в среднем на 10%, однако коэффициент, учитывающий влияние леса на сток, уменьшает значения максимального стока на 30–40% по сравнению с полем, что подтверждается данными наблюдений. В статье отмечается различие между коэффициентами дружности половодья, вычисленными по его физическому смыслу и определенными по данным рек-аналогов обратным путем Асарин А.Е., Жиркевич А.Н. О необходимости разработки методики расчета вероятного максимального паводка (PMF) для инженерно-гидрологических расчетов в России // Водное хозяйство России: проблемы, технологии, управление. 2012. № 4. С. 53–63. Брюхань Ф.Ф, Виноградов А.Ю., Лаврусевич А.А. Организация гидрометеорологического мониторинга в районе размещения Белорусской АЭС // Атомная энергия. 2015. Том 118. Номер 5. С. 292–295. Ресурсы поверхностных вод СССР: в 20 т. Т.10: Верхне-Волжский район: в 2 кн. Книга 1. Приложения / Под ред. Ю.Е. Яблокова. М.: Гидрометеоиздат, 1973. 478 с. Чеботарев А.И. Гидрологический словарь. Л.: Гидрометеоиздат, 1964. 222 с

    ИЗМЕНЕНИЯ СКОРОСТИ ВЕРТИКАЛЬНЫХ РУСЛОВЫХ ДЕФОРМАЦИЙ РАВНИННЫХ РЕК В УСЛОВИЯХ ПРИИЛЬМЕНСКОЙ НИЗМЕННОСТИ (НА ПРИМЕРЕ РЕКИ ПОРУСЬЯ)

    Get PDF
    The well-known patterns of regressive erosion from the mouth to the sources of watercourses on the rivers of Priilmen'ya are performed discretely, since the basis of erosion (first the level of Sredne-Lovatsy (Privaldaysky) glacial lake, and then Lake Ilmen) is decreased over 12.5 thousand years from elevations of about 85 m to modern 18 m, stabilizing for a long time at elevations of 60, 40, 30 m. Comparison of the longitudinal profile of the Porusia River constructed from cartographic materials with supreme erosion cut profile calculated according to the formula N.I. Makkaveev showed that the profile of this river has not yet been sufficiently developed, although the excess of the edge of the valley above the bottom of the river in its middle course is 10-15 m. The correctness of the calculation of the erosion curve is confirmed by its coincidence with the longitudinal profile of the river Lovat', which exists for a longer time and has the greatest water content among the rivers of the Priilmen lowland. According to topographic maps of 1932 and 1984, as well as our own measurements of 2016-2019 it was found that the total lowering of the river bottom near the village of Mintsevo (71 km from the source) over 90 years (1930-2019) reached 3.5 m. Using other assessment methods, including surveys of local residents, the depth of the erosion cut in this locality is approximately the same period of time ranged from 1 to 1.6-1.8 m. On a different locality of the river (53 km from the source) for a comparable period, similar rates of vertical channel deformations were obtained from cartographic materials. Studying of additional let make a hypothesis according to which over 300 years the bottom marks could decrease by 10 m. An analysis of the soil section data allowed us to conclude that the rate of vertical erosion had strongly marked discrete character. On hard washable areas, vertical erosion slowed sharply and was some thousands years, but for thick layers of sandy loam eroded for centuries.Известные закономерности регрессивной эрозии от устья к истокам водотоков на реках Приильменья выполняются дискретно, поскольку базис эрозии – вначале уровень Средне-Ловацого (Привалдайского) приледникового озера, а затем озера Ильмень – снижался в течение 12,5 тыс. лет с отметок около 85 м до современных 18 м, стабилизируясь на продолжительное время на отметках 60, 40, 30 м. Сравнение построенного по картографическим материалам продольного профиля реки Порусьи с рассчитанным по формуле Н.И. Маккавеева предельным профилем эрозионного вреза показало, что профиль исследуемой реки еще не достаточно выработан, хотя превышение бровок долины над дном реки в ее среднем течении составляет 10-15 м. Корректность расчета эрозионной кривой подтверждается ее совпадением с продольным профилем реки Ловать, существующую значительно более долгое время и имеющую наибольшую водность среди рек Приильменской низменности. По данным топографических карт 1932 и 1984 годов, а также собственных измерений 2016-2019 годов установлено, что общее понижение дна реки в районе деревни Минцево (71 км от истока) за 90 лет (1930-2019 годы) достигало 3,5 м. По другим способам оценки, включая опросы местных жителей, глубина эрозионного вреза на этом участке примерно за такой же промежуток времени составила от 1 до 1,6-1,8 м. На другом участке реки (53 км от истока) за сопоставимый период по картографическим материалам были получены аналогичные скорости вертикальных русловых деформаций. Изучение дополнительного материала позволило выдвинуть гипотезу, согласно которой за 300 лет отметки дна могли снизиться на 10 м. На основании анализа данных почвенного разреза сделан вывод, что скорость вертикального размыва имела ярко выраженный дискретный характер. На трудноразмываемых участках вертикальная эрозия резко замедлялась и составляла тысячи лет, а мощные слои супесей размывались в течение столетий.   Литература Беркович К.М. Русловые процессы на реках в сфере влияния водохранилищ. М.: Геогр. фак. МГУ, 2012. 163 с. Виноградов А.Ю., Обязов В.А., Кадацкая М.М. История формирования рек южного Приильменья в голоцене // Гидросфера. Опасные процессы и явления. 2019. Т. 1. Вып. 1. С. 90-113. DOI: 10.34753/HS.2019.1.1.001 Геология СССР. В 48 томах. Том I. Ленинградская, Псковская и Новгородская области. Геологическое описание. / Гл. ред. А.В. Сидоренко. М.: Недра, 1971. 504 с. Земцов А.А. Основные этапы развития речных долин Западно-Сибирской равнины // История развития речных долин и проблемы мелиорации земель: в 3 кн. Книга 2. Западная Сибирь и Средняя Азия / Отв. ред. Н.А. Флоренсови, В.А. Николаев. Новосибирск: Наука, 1979. С. 82-85. Квасов Д.Д. Позднечетвертичная история крупных озер и внутренних морей Восточной Европы. Л.: Наука, 1975. 279 с. Короновский Н.В. Общая геология: учебник. М.: КДУ, 2006. 528 с. Маккавеев Н.И. Русло реки и эрозия в ее бассейне. М.: Геогр. фак. МГУ, 2003. 353 с. Никонов А.А. С какой скоростью врезаются реки? // Природа. 1971. № 11. С. 79-82. Субетто Д.А. История формирования Ладожского озера и его соединения с Балтийским морем // Общество. Среда. Развитие (Terra Humana). 2007. № 1 (2). С. 111-120. Hughes A.L.C., Gyllencreutz R., Lohne Ø.S., Mangerud J., Svendsen J.I. The last Eurasian ice sheets – a chronological database and time-slice reconstruction, DATED-1 // Boreas. 2016. Vol. 45. Iss. 1. P. 1-45. DOI: 10.1111/bor.12142. Gorlach A., Hang T., Kalm V. GIS-based reconstruction of Late Weichselian proglacial lakes in northwestern Russia and Belarus // Boreas. 2017. Vol. 46. Iss. 3. P. 486-502. DOI: 10.1111/bor.12223. Rinterknecht V., Hang T., Gorlach A., Kohv M., Kalla K., Kalm V., Subetto D., Bourlès D., Léanni L., Guillou V. The Last Glacial Maximum extent of the Scandinavian Ice Sheet in the Valday Heights, western Russia: Evidence from cosmogenic surface exposure dating using 10Be // Quaternary Science Reviews. 2018. Vol. 200. P. 106-113. DOI: 10.1016/j.quascirev.2018.09.03

    СУЩЕСТВУЮЩИЕ ПРОБЛЕМЫ ГИДРОЛОГИЧЕСКИХ РАСЧЁТОВ. ЧАСТЬ 1

    Get PDF
    The article begins a discussion on the validity of applying methods of probability theory and mathematical statistics in hydrology calculations. The methodology of river flow calculations nowadays is based on the statistical processing of observation datas. These methods are specified in prescriptive documents (such as SR 33-101-2003) and, in fact, are required for using in engineering calculations. Any other alternative methods are not advisable. However, our experience of using probabilistic-statistical methods in engineering-hydrometeorological surveys let us to doubt the propriety of such application. It is questionable whether the concept of a random variable is applied to hydrological characteristics, in particular, to water consumption. In terms of mathematics, the sample input data subsequently used in solving statistical problem is the result of an experiment conducted under unaltered conditions. Water consumption depends on many natural factors, some of which are constantly changing. In addition, dependence on some factors is almost functional. For example, precipitation causes an increase of river flow, and their absence causes a decrease. Other factors, in contrast, are quite stable. For each catchment area, they are not random and behave predictably. For example, extrapolation of the maximum water flow rate in the region of rare probability, seems insufficiently reasoned. The error of measurements (definitions) of water flow in the river increases as its value increases. This is facilitated by the almost impossible measurement of river flow when water enters the floodplain, while floating of ice, while timber drifting on rivers, etc. The measurement methods used in these cases give an error of up to 25% by experts assessment. Herewith water flows are differs by 5-10%. Thus, we do not have the ranked values of several of the highest water flow, but some average maximum flow with regular repeatability. As a result, it was concluded that the use of probabilistic-statistical analysis in hydrological calculations is insufficiently justified.Статья начинает дискуссию на тему об обоснованности использования методов теории вероятности и математической статистики в гидрологических расчетах. Вся методология современных расчётов стока зиждется на статистической обработке рядов наблюдений. Эти методы указаны в регламентирующих документах (СП 33-101-2003) и, де-факто, являются обязательными к применению при выполнении расчетов для нужд строительного проектирования. Любые другие альтернативные методы таковыми не являются. Однако опыт применения вероятностно-статистических методов в инженерно-гидрометеорологических изысканиях позволяет усомниться в правомерности такой постановки вопроса. Вызывает сомнение применение к гидрологическим характеристикам, в частности расходу воды, понятия случайной величины. С точки зрения математика, выборка исходных данных, впоследствии используемых при решении статистической задачи, всегда получается в результате эксперимента, проводимого при неизменных условиях. Расход воды зависит от многих природных факторов, часть из которых постоянно меняется. Кроме того, зависимость от некоторых факторов почти функциональна. Например, выпадение осадков вызывает увеличение стока, а отсутствие – уменьшение. Другие факторы, наоборот, достаточно стабильны. Для каждого конкретного водосбора они не случайны и ведут себя вполне предсказуемо. Представляется недостаточно аргументированной экстраполяция, например, максимальных расходов воды в область редкой обеспеченности. Погрешность измерений (определений) расхода воды в реке возрастает по мере его увеличения. Этому способствует практически невозможное измерение расхода при выходе воды на пойму, при ледоходе, карчеходе и другие. Применяемые в этих случаях методы измерения по экспертной оценке дают ошибку до 25%. Сами же "измеренные" максимальные расходы отличаются друг от друга на 5-10 %. Таким образом, мы имеем не ранжированные значения нескольких наибольших расходов, а некий усредненный максимальный расход, имеющий регулярную повторяемость. Как следствие, сделан вывод о недостаточной обоснованности применения математического аппарата вероятностно-статистического анализа в гидрологических расчётах.   Литература Айвазян C.А., Енюков И.С., Мешалкин Л.Д. Прикладная статистика: Основы моделирования и первичная обработка данных. Справочное изд. М.: Финансы и статистика, 1983. 471 с. Виноградов А.Ю. Никифоровский А.А. К вопросу о применимости статистических методов в расчетах максимального стока малых рек // Сборник докладов III Международной конференции «Селевые потоки: катастрофы, риск, прогноз, защита» (г. Южно-Сахалинск, 22-26 сентября 2014 г.) / Отв. редактор Н.А. Казаков. Южно-Сахалинск: Сахалинский филиал ФГБУН Дальневосточный геологический институт ДВО РАН, 2014. С. 242-246 Владимиров А.М. Гидрологические расчёты. Л.: Гидрометеоиздат, 1990. 365 с. Гнеденко Б.В. Беседы о математической статистике. М.: Наука, 1968. 64 с. Горошков И.Ф. Гидрологические расчёты. Л.: Гидрометеоиздат, 1979. 433 с. Дружинин И.П., Коноваленко З.П., Хамьянова Н.В. Вековые и внутривековые колебания стока рек Азиатской части СССР // Многолетние колебания стока и вероятностные методы его расчета / Под ред. В.Д. Быкова. М.: Изд. МГУ, 1967. C. 60-66. Ивченко Г.И., Медведев Ю.И. Введение в математическую статистику: учебник. М.: Из-во ЛКИ, 2010. 600 с. Крицкий С.Н., Менкель М.Ф. Гидрологические основы управления речным стоком. М.: Наука, 1981. 257 с. Найденов В.И., Кожевникова И.А. Почему так часто происходят наводнения // Природа. 2003. № 9 (1057). С. 12–20. Ресурсы поверхностных вод СССР: в 20 т. Т.2: Карелия и Северо-Запад. Часть 2. Приложения / Под ред. В.Е. Водогрецкого. Л.: Гидрометеоиздат, 1972. 278 с. Рождественский А.В., Чеботарев А.И. Статистические методы в гидрологии. Л: Гидрометеоиздат, 1974. 424 с. Федотов Г.А. Изыскания и проектирование мостовых переходов: учебное пособие для студентов учреждений высшего профессионального образования. М.: Издательский центр «Академия», 2010. 304 с

    УРОВЕННЫЙ РЕЖИМ ОЗЕРА ИЛЬМЕНЬ

    Get PDF
    Researches of changes in the water level of Lake Ilmen are important for studying the development of the river network in its basin, since it is the basis of erosion for them. The purpose of the work was to assess the level regime of Lake Ilmen during the Holocene, including the modern period. The level regime of the lake is determined not only by the inflow of waters from the catchment, but is also regulated by the runoff of the Volkhov River flowing out of it, which, which prior to the construction of the Volkhov Hydroelectric Power Station in 1926, depended on the marks of the Pchevsky and Veletsky rapids in the downstream. During the Holocene, the marks of the Pchevsky and Veletsky rapids were decreasing, because they been eroded by the Volkhov River. An approximate reconstruction of the change in rapids marks has been carried out, depending on the humidity of the climate in previous centuries. Evaluation of a varying degree humidification over a century / millennium is rather arbitrary and was taken as the ratio of the number of rainy years to years with droughts based on annals data. By the beginning of our era, the minimum water level of the lake was not less than 19.5 m. The maximum water level most likely did not exceeding the mark of 24.5 m, considering the similarity of climate to the last centuries, that is, the amplitude of the water levels was less than modern. Only climatic features determined the water level regime of the lake starting from the second half of the first millennium to the present day. On the grounds of the fact that the minimum bottom marks of some rivers, flowing into lake Ilmen (in particular Lovat’, Msta and Shelon’), are lower not only than the minimum water level of the lake, but also than the minimum marks of its bottom, we can do a preliminary conclusion that the water level of Lake Ilmen in the past was rather lower than at present and was at modern mark of 16-17 m Baltic system.Исследования изменений уровня озера Ильмень важны для изучения развития речной сети в его бассейне, так как он является базисом эрозии для них. Цель работы состояла в оценке уровенного режима озеро Ильмень в течение голоцена, включая современный период. Уровенный режим озера определяется не только поступлением вод с водосбора, но и регулируется стоком вытекающей из него реки Волхов, который до строительства 1926 году Волховской ГЭС зависел от отметок Пчевских и Велецких порогов в низовьях реки. В течение голоцена Пчевские и Велецкие пороги размывались рекой Волхов, в результате чего их отметки понижались. Выполнена ориентировочная реконструкция изменения отметок порогов в зависимости от увлажненности климата в предыдущие столетия. Оценка той или иной степени увлажнения климата за столетний/тысячелетний период достаточно условна и принималась как отношение количества дождливых годов к годам с засухами на основании летописных данных. К началу нашей эры минимальный уровень озера находился на отметках не ниже 19,5 м. Максимальный уровень, учитывая схожесть климата с последними столетиями, скорее всего, не превышал отметки в 24,5 м, то есть амплитуда уровней была меньше современной. Начиная со второй половины первого тысячелетия до наших дней, уровенный режим озера определялся только климатическими особенностями. На основании того, что минимальные отметки дна некоторых рек, в частности Ловати, Мсты и Шелони, впадающих в Ильмень, находятся не только ниже минимального уровня озера, но и минимальных отметок его дна, можно сделать предварительный вывод, что уровень озера Ильмень в прошлом был несколько ниже, нежели в настоящее время и составлял современные 16-17 м балтийской системы.   Литература Барышников Н.Б., Попов И.В. Динамика русловых потоков и русловые процессы: учебное пособие. Л.: Гидрометеоиздат, 1988. 454 с. Борисенков Е.П., Пасецкий В.М. Тысячелетняя летопись необычайных явлений природы. М.: Мысль, 1988. 522 с. Былинский Е.Н. Влияние снижения уровней Ильменского и Ладожского озера на развитие продольных профилей притоков оз. Ильмень и Волхова // Вестн. Моск. ун-та: Сер. биологии, почвоведения, геологии, географии. 1959. № 3. С. 221-231 Васильева Н.В., Субетто Д.А., Вербицкий В.Р., Кротова-Путинцева А.Е. История формирования Ильмень-Волховского бассейна // Известия Российского государственного педагогического университета им. А.И. Герцена. 2012. С. 141-150. Виноградов А.Ю., Обязов В.А. Гляциоизостатическое поднятие Приильменской низменности в голоцене // Сборник научных трудов XXIV Международной научно-практической конференции «Научные исследования: ключевые проблемы III тысячелетия» (Москва, 01-02 апреля 2018 г.). М.: Проблемы науки, 2018. С. 99-102. Виноградов А.Ю., Обязов В.А., Кадацкая М.М. История формирования рек Южного Приильменья в голоцене // Гидросфера. Опасные процессы и явления. 2019. Т. 1. Вып. 1. С. 90-113. DOI: 10.34753/HS.2019.1.1.001 Виноградов Ю.Б. Этюды о селевых потоках. Л.: Гидрометеоиздат, 1980. 143 с. Геология СССР. В 48 томах. Том I. Ленинградская, Псковская и Новгородская области. Геологическое описание. Северо-Западное территориальное / Гл. ред. А.В. Сидоренко. М.: Недра, 1971. 504 с. Гришанин К.В. Динамика русловых потоков. Л.: Гидрометеоиздат, 1969. 428 с. Зубов В.Г. Механика. М.: Наука, 1978. 352 с. Квасов Д.Д. Позднечетвертичная история крупных озер и внутренних морей Восточной Европы. Л.: Наука, 1975. 279 с. Малаховский Д.Б. Геоморфологические и геологические наблюдения в долине реки Ловать // Известия Русского Географического общества. 2001. Т. 133. Вып. 2. С. 32-38 Многолетние данные о режиме и ресурсах поверхностных вод суши: в 15 т. Т. 1. РСФСР: в 26 вып. Вып. 5. Бассейны рек Балтийского моря, Ладожского и Онежского озер. Л.: Гидрометеоиздат, 1986. 689 с. Нескоромных В.В. Разрушение горных пород при проведении геологоразведочных работ: учебное пособие. М.: НИЦ ИНФРА-М, 2016. 392 с. DOI: 10.12737/11719 Петров А.Г., Потапов И.И. Перенос наносов под действием нормальных и касательных придонных напряжений с учетом уклона дна // Прикладная механика и техническая физика. 2014. т. 55. № 5 (327). С. 100-105. Ресурсы поверхностных вод: в 20 т. Т. 2. Карелия и Северо-Запад: в 2 ч. Ч. 2. Приложения / Под ред. В.Е. Водогрецкого. Л.: Гидрометеоиздат, 1972. 278 с. Субетто Д.А. История формирования Ладожского озера и его соединения с Балтийским морем // Общество. Среда. Развитие (Terra Humana). 2007, № 1 (2). С. 111-120. Чувардинский В.Г. О ледниковой теории. Происхождение образований ледниковой формации. Апатиты, 1998. 303 с. Шашенко О.М., Пустовойтенко В.П., Сдвижкова О.О. Геомеханика: учебник. К.: ГВУЗ Национальный горный университет, 2015. 563 с. Шуйский Ю.Д., Симеонова Г. О влиянии геологического строения морских берегов на процессы абразии // Докл. Болг. АН. 1976. Т. 29. №2. С. 57-79. Gorlach A., Hang T., Kalm V. GIS-based reconstruction of Late Weichselian proglacial lakes in northwestern Russia and Belarus // Boreas. 2017. Vol. 46. Iss. 3. P. 486-502. DOI: 10.1111/bor.12223. Hughes A.L.C., Gyllencreutz R., Lohne Ø.S., Mangerud J., Svendsen J.I. The last Eurasian ice sheets – a chronological database and time-slice reconstruction, DATED-1 // Boreas. 2016. Vol. 45. Iss. 1. P. 1-45. DOI: 10.1111/bor.12142. Rinterknecht V., Hang T., Gorlach A., Kohv M., Kalla K., Kalm V., Subetto D., Bourlès D., Léanni L., Guillou V. The Last Glacial Maximum extent of the Scandinavian Ice Sheet in the Valday Heights, western Russia: Evidence from cosmogenic surface exposure dating using 10Be // Quaternary Science Reviews. 2018. Vol. 200. P. 106-113. DOI: 10.1016/j.quascirev.2018.09.032 Subetto D.A., Shvarev S.V., Nikonov A.A., Zaretskaya N.E., Poleshchuk A.V., Potakhin M.S. New evidence of the Vuoksi River origin by geodynamic cataclysm // Bulletin of the Geological Society of Finland. 2018. Vol. 90. P. 275-289. DOI: 10.17741/bgsf/90.2.010

    КРИТИЧЕСКИЙ АНАЛИЗ РУКОВОДЯЩИХ ДОКУМЕНТОВ ПО РАСЧЁТУ РАЗВИТИЯ ГИДРОДИНАМИЧЕСКИХ АВАРИЙ

    Get PDF
    The guidance documents of the Russian Federation (RD 03-607-03 and RD 09-391-00) present calculation methods of hydrodynamic accidents in storage tanks and facilities for liquid industrial and waste. Because the accidents at such facilities represent a breakthrough of a dam with the formation of a hole in its body, there is used a methodological framework developed for ground dams of any purpose for calculations. This fact made it possible to consider the applicability of these documents to the reservoir dam on the Kokpekty River in Kazakhstan, where an accident occurred in March 2014. An analysis of the applicability of the considered guidance documents showed that the values of the most parameters calculated by them do not correspond to reality and / or have no physical sense, they cannot be used in practice. In particular, the considered documents do not take into account the time for the formation of erosion tracks, which puts to an error (by an order of magnitude) in the estimating time of a break formation. There is taken the rectangular shape of the tracks in the considered guidelines, although in practice it is trapezoidal in most cases. Comparison of the calculated and measured sizes of the erosion tracks showed their difference by two times. Even the size of the erosion track according to the proposed formula may differ by 25% depending on the selected calculation step. RD 03-607-03 and RD 09-391-00 give different formulas for hydraulic size calculating, which puts to a difference by 1.65 times. Moreover, there is used the kinematic viscosity instead of the dynamic one while the hydraulic size calculating. One of the most important characteristics, the transporting (erosion) flow ability, in the considered documents is dimensionless and has no physical sense. It is also notable that the proposed guidance documents, in violation of GOST 8.417-2002, use non-standardized dimension values and in the same formula coexist as multiplier meters, centimeters and millimeters. Thus, RD 03-607-03 and RD 09-391-00 are not recommended for use in calculation of hydrodynamic accidents and flooding zones, these documents require immediate revision.В руководящих документах Российской Федерации (РД 03-607-03 и РД 09-391-00) представлены методики расчёта развития гидродинамических аварий на накопителях и хранилищах жидких промышленных и производственных отходов. Поскольку аварии на таких объектах представляют собой прорыв плотины с образованием прорана в ее теле, для расчётов используется методическая основа, разработанная для грунтовых плотин любого назначения. Это позволило рассмотреть применимость указанных документов к плотине водохранилища на реке Кокпекты в Казахстане, на которой произошла авария в марте 2014 года. Анализ применимости рассматриваемых документов показал, что численные значения большинства параметров, рассчитанных по ним, не соответствуют действительности и/или не имеют физического смысла, их нельзя использовать на практике. В частности, в предлагаемых документах не учитывается время на образование эрозионных рытвин, что приводит к ошибке оценки времени образования прорана на порядок. В рассматриваемых руководящих документах принята прямоугольная форма прорана, хотя на практике в большинстве случаев она трапециевидная. Сравнение расчётных и измеренных размеров прорана показало их различие в два раза. Даже результаты расчёта размеров прорана по предлагаемой формуле в зависимости от выбранного расчётного шага могут отличаться на 25%. В РД 03-607-03 и РД 09-391-00 приводятся разные формулы для расчёта гидравлической крупности, что приводит к различию в результатах в 1,65 раза. Кроме того, при расчёте гидравлической крупности вместо динамической используется кинематическая вязкость. Одна из важнейших характеристик – транспортирующая (размывающая) способность потока в рассматриваемых документах безразмерна и не имеет физического смысла. Обращает также на себя внимание, что предлагаемые руководящие документы, в нарушение ГОСТ 8.417-2002, не только используют нестандартизированные величины размерностей, но даже в одной из формул в качестве сомножителей соседствуют метры, сантиметры и миллиметры. Таким образом, РД 03-607-03 и РД 09-391-00 не рекомендуется использовать для расчётов развития гидродинамических аварий и зон затопления, данные документы требуют немедленного пересмотра. ЛитератураАлександров Д.В., Зубарев А.Ю., Искакова Л.Ю. Введение в гидродинамику: учеб. пособие. Екатеринбург: Изд-во Уральского университета, 2012. 112 с.Ананенков А.Г., Ставкин Г.П., Андреев О.П., Хабибуллин И.Л., Лобастова С.А. Эколого-экономическое управление охраной окружающей среды. М.: Недра, 2003. 227 с.Большаков В.А., Константинов Ю.М., Попов В.Н. Справочник по гидравлике. К.: Вища школа, 1977. 280 с.Виноградова Т.А., Макушин М.А., Виноградов И.А., Парфенов Е.А., Кадацкая М.М., Сазонова С.И. Расчёт морфометрических характеристик прорана и максимальных расходов при прорывах грунтовых плотин // Гидросфера. Опасные процессы и явления. 2019. Том 1. Вып. 2. С. 280-295. DOI: 10.34753/HS.2019.1.2.006.Гришанин К.В. Динамика русловых потоков. Л.: Гидрометеоиздат, 1969. 428 с.Кадацкая М.М., Виноградов А.Ю., Кацадзе В.А., Беленький Ю.И., Бачериков И.В., Хвалев С.В., Каляшов В.А. Анализ методов расчёта неразмывающей скорости при проектировании водопропускных и водоотводных сооружений лесного хозяйства // Известия Санкт-Петербургской лесотехнической академии. 2019. Вып. 227. С. 174–187. DOI: 10.21266/2079-4304.2019.227.174-187.Пономарчук К.Р. Оценка параметров развития прорана при разрушении грунтовой плотины // Природообустройство. 2011. №3. С. 77-82.Тарабаев Ю.Н., Зотов Ю.М., Чагаев В.П. Шульгин В.Н. Инженерное обеспечение предупреждения и ликвидации чрезвычайных ситуаций при наводнениях (учебное пособие). Новогорск: Академия гражданской защиты МЧС России, 2000. 207 с.Чижиумов С.Д. Основы гидродинамики: учеб. пособие. Комсомольск-на-Амуре: ГОУВПО «КнАГТУ», 2007. 106 с.Чугаев Р.Р. Гидравлика: учебник для вузов. Л.: Энергоиздат, 1982. 672 с.Шмакова М.В., Кондратьев С.А. Транспортирующая способность речного потока// Ученые записки Российского государственного гидрометеорологического университета. 2019. № 56. С. 176-187 DOI: 10.33933/2074-2762-2019-56-176-187

    НЕРАЗМЫВАЮЩИЕ СКОРОСТИ ПОТОКА ДЛЯ НЕСВЯЗНЫХ ГРУНТОВ

    Get PDF
    There are the values of non-eroding water velocities for various types of bottom sediments (incoherent and cohesive) given in the normative documentation in the form of tables and graphs. Also there are a number of regulatory documents containing methods for calculation such velocities. These methods are based on empirical dependencies adapted to specific conditions. The calculated mean non-eroding water velocities are proportional to the depth of flow and bottom particle size in the case of incoherent bottom sediments erosion. The authors made an attempt to estimate non-eroding water velocity by a physical approach to the problem depending on the internal friction angle, the calculated clutch of incoherent bottom sediments and the depth of the water over the bottom. This approach should be universal. An analysis of the results indicated that the proposed formula for calculating bottom non-eroding water velocities in all considered cases gives results significantly higher than the values given in the regulatory documents for the corresponding size of incoherent bottom sediments. As a result authors obtained non-eroding water velocities, which were overestimated at times on the basis of expert evaluation. When the depth changes from 0.5 to 10 m, the spread of estimated bottom velocities varies from 14 to 22%, depending on the size of the incoherent soil. It was concluded that for smaller particles of incoherent soil, the less deviation of the calculated values of bottom non-eroding water velocities from the normative ones (for massive gravel sands at a 10 m flow depth, the deviation from the normative values reaches 375-510%). In addition, the dependence of the value bottom non-eroding water velocity on the depth is traced, which is not provided in regulatory documents. The authors offer the scientific community to join to discussion of the reasons for these discrepancies.Значения неразмывающих скоростей для различных типов донных отложений (связных и несвязных) приводятся в нормативной документации в виде таблиц и графиков. Кроме этого, существует ряд нормативных документов, содержащих методики их расчета. Эти методики основаны на эмпирических зависимостях, адаптированных к конкретным специфическим условиям. Расчетные значения средних неразмывающих скоростей пропорциональны глубине потока и диаметру частиц в случае размыва несвязных донных отложений. Авторами статьи сделана попытка оценить неразмывающую скорость потока путем физического подхода к проблеме в зависимости от угла внутреннего трения, расчетного сцепления несвязных донных отложений (грунтов) и глубины водной толщи над размываемым участком дна. Данный подход должен являться универсальным. Анализ полученных результатов показал, что предложенная формула расчета придонных неразмывающих скоростей во всех рассмотренных случаях дает результаты значительно больше значений, приведенных в нормативных документах для соответствующих градаций крупности несвязных донных отложений. В результате расчетов были получены неразмывающие скорости, на основании экспертной оценки, завышены в несколько раз. При изменении глубины потока от 0,5 до 10 м разброс оцененных придонных скоростей колеблется от 14 до 22% в зависимости от крупности несвязного грунта. Сделан вывод, что чем меньше частицы несвязного грунта, тем меньше отклонение рассчитанных значений придонных неразмывающих скоростей от нормативных (для крупнозернистых гравелистых песков при глубине потока 10 м отклонение от нормативных значений достигают 375-510%). Кроме того, прослеживается зависимость величин придонной неразмывающей скорости от глубины потока, что не предусмотрено нормативными документами. Авторы предлагают научному сообществу подключиться к обсуждению причин таких несоответствий. Литература Барышников Н.Б. Гидравлические сопротивления речных русел: учебное пособие. СПб.: изд. РГГМУ, 2003. 147 с. Боровков В.С., Волынов М.А. Размыв речного русла в грунтах, обладающих сцеплением // Вестник МГСУ. 2013. Том 8. № 4. С. 143-149. DOI:10.22227/1997-0935.2013.4.143-149 Виноградов А.Ю., Кадацкая М.М., Бирман А.Р., Виноградова Т.А., Обязов В.А., Кацадзе В.А., Угрюмов С.А., Бачериков И.В., Коваленко Т.В., Хвалев С.В., Парфенов Е.А. Расчёт неразмывающих скоростей водного потока на высоте верхней границы пограничного слоя // Resources and Technology. 2019. Т. 16. № 3. С. 44-61. DOI: 10.15393/j2.art.2019.4782. Гришанин К.В. Динамика русловых потоков. Л.: Гидрометеоиздат, 1969. 428 с. Кадацкая М.М., Виноградов А.Ю., Кацадзе В.А., Беленький Ю.И., Бачериков И.В., Хвалев С.В., Каляшов В.А. Анализ методов расчета неразмывающей скорости при проектировании водопропускных и водоотводных сооружений лесного хозяйства // Известия Санкт-Петербургской лесотехнической академии. 2019. Вып. 227. С. 174-187. DOI:10.21266/2079-4304.2019.227.174-187 Кадацкая М.М., Виноградов А.Ю., Обязов В.А., Кацадзе В.А., Угрюмов С.А., Беленький Ю.И., Бирман А.Р., Хвалев С.В., Кучмин А.В., Бачериков И.В., Коваленко Т.В. Расчет неразмывающих скоростей на высоте выступов шероховатости донных отложений // Системы. Методы. Технологии. 2020. № 1 (45). С. 80-84. DOI: 10.18324/2077-5415-2020-1-80-84 Ялтанец И.М., Тухель А.Э., Леванов Н.И., Дятлов В.М. Переработка горных пород с использованием средств гидромеханизации: Учебное пособие. М.: Издательство Московского государственного горного университета, 2008. 318 с

    ОЦЕНКА ЗНАЧЕНИЯ КОЭФФИЦИЕНТА ШЕРОХОВАТОСТИ

    Get PDF
    The article considers one of the main parameters while conducting water management calculations – the roughness coefficient. Up-to-date assessment of its value is carried out according to special tables or by calculation. Article presents various methods for calculating the roughness coefficient – from the reverse evaluation using the Chezy formula by the measurements to the empirical relations obtained by various specialists on the basis of field studies. In addition, the authors considered formulas for calculating the roughness coefficient based on physics. The results of calculations obtained for such formulas best fit their values obtained in the inverse way from the Chezy formula. The calculation methods presented in the article were tested on the data of gauging station on the river Polist' – near the settlement Podtopol'e for the period of 1954 year and on the river Gozovka – near the settlement Goza for the period 2014-2017. Behind comparing the results of measurements, calculations for various formulas and estimated tabular data, the authors made the following conclusions. Pressure losses in explicit depends on the depth of the stream and the slope of the free surface, the last one implicitly characterizes the frictional of the channel. At the same water flow rates, a change in the roughness coefficient can reach tens of percent. With different filling of the channel, the roughness coefficient can change by several times, which predetermines the corresponding errors in the tabular estimation of the roughness coefficient, even for a simplified case – only for an open channel. Therefore, all the dependencies, taking into account only the granulometric of riverbed deposits, basically can not have practical application. General conclusion: even with the same water level for simplified conditions of an open channel without vegetation, the roughness coefficient can differ by several times, which nullifies all attempts to theoretically evaluate it in the absence of direct measurements of slope, speed, and average depth.В статье рассматривается один из основных параметров при проведении водохозяйственных расчетов – коэффициент шероховатости. Оценка его величины до настоящего времени проводится по специальным таблицам или расчетным способом. Приведены различные методы расчета коэффициента шероховатости – от оценки обратным путем по формуле Шези по результатам измерений до эмпирических зависимостей, полученных различными специалистами на основе натурных исследований. Кроме того, авторами рассмотрены формулы расчета коэффициента шероховатости на основании физических соображений. Результаты расчетов, полученных по таким зависимостям, наилучшим образом соответствуют их значениям, полученным обратным путем из формулы Шези. Приведенные в статье методы расчета апробированы на данных гидрологических постов р. Полисть – Подтополье за 1954 г. и р. Гозовка – Гоза за период 2014-2017 гг. При сравнении результатов измерений, расчетов по различным зависимостям и оценочных табличных данных сделаны следующие выводы. Потери напора в явном виде зависят от глубины потока и уклона свободной поверхности, последний параметр в неявном виде характеризует сопротивление русла. При одних и тех же расходах воды изменение величины коэффициента шероховатости может достигать десятков процентов. При различном же наполнении русла коэффициент шероховатости может измениться в несколько раз, что предопределяет соответствующие ошибки при табличной оценке коэффициента шероховатости даже для упрощенного случая – только для открытого русла. Поэтому все зависимости, учитывающие только крупность русловых отложений, принципиально не могут иметь практического применения. Общий вывод: даже при одном и том же уровне воды для упрощенных условий открытого русла без растительности, коэффициент шероховатости может отличаться в разы, что сводит к нулю все попытки в его теоретической оценке при отсутствии прямых измерений уклона, скорости и средней глубины. Литература Барышников Н.Б. Гидравлические сопротивления речных русел: учебное пособие. СПб.: изд. РГГМУ, 2003. 147 с. Барышников Н.Б., Плотки­на Н.П., Рублевская Р.М. Коэффициенты шероховатости речных русел // Динамика русловых потоков и охрана природных вод. Сборник научных трудов (межвузовский). Вып. 107 / Под ред. Н.Б. Барышникова и др. Л.: изд. ЛГМИ, 1990. С. 4-11. Виноградов А.Ю., Кацадзе В.А., Угрюмов С.А., Бирман А.Р., Беленький Ю.И., Кадацкая М.М., Обязов В.А., Виноградова Т.А. Взаимодействие руслового потока с дном в пограничном слое // Все материалы. Энциклопедический справочник. 2019а. №. 12. С. 38-43. DOI: 10.31044/1994-6260-2019-0-12-38-43 Виноградов А.Ю., Минаев А.Н., Кадацкая М.М., Кучмин А.В., Хвалев С.В. Расчет значений параметров И.И. Никурадзе и Т. Кармана в зависимости от температуры воды и крупности донных отложений // Известия Санкт-Петербургской лесотехнической академии. 2019б. Вып. 229. С. 196-204. DOI: 10.21266/2079-4304.2019.229.196-204 Гришанин К.В. Динамика русловых потоков. Л.: Гидрометеоиздат, 1969. 428 с. Железняков Г.В. Пропускная способность русел и каналов рек. Л.: Гидрометеоиздат, 1981. 308 с. Косиченко Ю.М. Влияние эксплуатационных факторов на пропускную способность земляных русел каналов // Научный журнал Российского НИИ проблем мелиорации. 2011. № 3(03). С. 55-68. Мамедов А.Ш. Об определении коэффициента шероховатости рек [Электронный ресурс] // Труды VII Всероссийского гидрологического съезда (г. Санкт-Петербург, 19-20 ноября 2013 г.). URL: https://clck.ru/LfhCf (дата обращения: 26.05.2019). Снищенко Б.Ф. К.В. Гришанин и учение о динамике русловых потоков // Журнал университета водных коммуникаций. 2010. Вып. 2 (6). С. 10-18. Триандафилов А.Ф, Ефимова С.Г. Гидравлика и гидравлические машины: учебное пособие. Сыктывкар: изд. СЛИ, 2012. 212 с
    corecore