12 research outputs found

    Transport of Ca2+ and Ca2+-Dependent Permeability Transition in Rat Liver Mitochondria under the Streptozotocin-Induced Type I Diabetes

    No full text
    Although diabetes mellitus is known to be a disease associated with mitochondrial dysfunction, not everything is clear about mitochondrial Ca2+ transport and Ca2+-induced permeability transition in diabetic cells. The objective of this work was to study the operation of MCU and Ca2+-dependent mitochondrial permeabilization in the liver cells of Sprague-Dawley rats under the streptozotocin-induced type I diabetes. It was shown that two weeks after the induction of diabetes, the rate of Ca2+ uptake by the mitochondria of diabetic animals increased ~1.4-fold. The expression of MCU and MICU1 subunits did not change, yet the quantity of dominant-negative MCUb channel subunits was almost twice as lower. The organelles also became more resistant to the induction of CsA-sensitive MPT pore and less resistant to the induction of CsA-insensitive palmitate/Ca2+-induced pore. The mitochondria of diabetic liver cells also showed changes in the lipid matrix of their membranes. The content of fatty acids in the membranes grew, and microviscosity of the lipid bilayer (assessed with laurdan) increased. At the same time, lipid peroxidation (assessed by the production of malonic dialdehyde) was stimulated. The paper discusses the consequences of the diabetes-related changes in mitochondria in the context of cell physiology

    Taxon-level assessment of the data collection quality in Atlas Florae Europaeae: insights from the case of Rosa (Rosaceae) in Eastern Europe

    No full text
    By the method of data re-collection and re-assessment, we here test the completeness of distribution areas of the species and species aggregates of Rosa in Eastern Europe as mapped in volume 13 of Atlas Florae Europaeae (AFE), and discuss insights into the issues connected with the data. We found many new occurrences which are additions to the published maps: 1068 records of species and 570 records of species aggregates. The new occurrences are listed with references to the sources, and the updated AFE maps are provided. The greatest increase by new native occurrences was revealed for the species that are widespread or taxonomically complicated, and by new alien occurrences for the species that currently expand their secondary distribution areas. The mapping work published in 2004 is considered good, with minor omissions caused by possible oversights and incomplete sampling. The majority of new additions originated in the period after the original data collection. Nearly the same amount of new data originated from larger and smaller herbarium collections, underlining the value of small collections for chorological studies. We found that only ca 20% of new records based on herbarium specimens have been published, thus highlighting the need for data papers for publication of distributional data. The greatest increase by new records based on herbarium specimens was found for insufficiently studied territories (Belarus, central, northern and eastern parts of Russia), whereas the same level of increase for the territories with reasonably good coverage (Latvia) was achieved by observations. We conclude that the overall sparsity of published records in Eastern Europe is caused by a lower level of data collection rather than by poor data availability, and that floristic surveys based on herbarium specimens cannot compete in speed and density of records with observation-based surveys, which may become the main source of distributional information in the future

    Bifunctional Magnetite–Gold Nanoparticles for Magneto-Mechanical Actuation and Cancer Cell Destruction

    No full text
    Magnetite–gold dumbbell nanoparticles are essential for biomedical applications due to the presence of two surfaces with different chemical natures and the potential combination of magnetic and plasmonic properties. Here, the remote actuation of Fe3O4-Au hybrid particles in a rotating (1 Hz, 7 mT), static (7 mT) or pulsed low-frequency (31 Hz, 175 mT, 30 s pulse/30 s pause) magnetic field was studied. The particles were synthesized by a high-temperature wet chemistry protocol and exhibited superparamagnetic properties with the saturation magnetization of 67.9 ± 3.0 Am2 kg−1. We showcased the nanoparticles’ controlled aggregation in chains (rotating/static magnetic field) in an aqueous solution and their disaggregation when the field was removed. The investigation of nanoparticle uptake by LNCaP and PC-3 cancer cells demonstrated that Fe3O4-Au hybrids mainly escaped endosomes and accumulated in the cytoplasm. A significant fraction of them still responded to a rotating magnetic field, forming short chains. The particles were not toxic to cells at concentrations up to 210 μg (Fe3O4) mL−1. However, cell viability decrease after incubation with the nanoparticles (≥70 μg mL−1) and exposure to a pulsed low-frequency magnetic field was found. We ascribe this effect to mechanically induced cell destruction. Overall, this makes Fe3O4-Au nanostructures promising candidates for intracellular actuation for future magneto-mechanical cancer therapies

    Bifunctional Magnetite–Gold Nanoparticles for Magneto-Mechanical Actuation and Cancer Cell Destruction

    No full text
    Magnetite–gold dumbbell nanoparticles are essential for biomedical applications due to the presence of two surfaces with different chemical natures and the potential combination of magnetic and plasmonic properties. Here, the remote actuation of Fe3O4-Au hybrid particles in a rotating (1 Hz, 7 mT), static (7 mT) or pulsed low-frequency (31 Hz, 175 mT, 30 s pulse/30 s pause) magnetic field was studied. The particles were synthesized by a high-temperature wet chemistry protocol and exhibited superparamagnetic properties with the saturation magnetization of 67.9 ± 3.0 Am2 kg−1. We showcased the nanoparticles’ controlled aggregation in chains (rotating/static magnetic field) in an aqueous solution and their disaggregation when the field was removed. The investigation of nanoparticle uptake by LNCaP and PC-3 cancer cells demonstrated that Fe3O4-Au hybrids mainly escaped endosomes and accumulated in the cytoplasm. A significant fraction of them still responded to a rotating magnetic field, forming short chains. The particles were not toxic to cells at concentrations up to 210 μg (Fe3O4) mL−1. However, cell viability decrease after incubation with the nanoparticles (≥70 μg mL−1) and exposure to a pulsed low-frequency magnetic field was found. We ascribe this effect to mechanically induced cell destruction. Overall, this makes Fe3O4-Au nanostructures promising candidates for intracellular actuation for future magneto-mechanical cancer therapies
    corecore