4 research outputs found

    Use of Nickel Oxide Catalysts (Bunsenites) for In-Situ Hydrothermal Upgrading Process of Heavy Oil

    No full text
    In this study, Nickel oxide-based catalysts (NixOx) were synthesized and used for the in-situ upgrading process of heavy crude oil (viscosity 2157 mPa·s, and API gravity of 14.1° at 25 °C) in aquathermolysis conditions for viscosity reduction and heavy oil recovery. All characterizations of the obtained nanoparticles catalysts (NixOx) were performed through Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Atomic Force Microscopy (AFM), X-Ray and Diffraction (XRD), and ASAP 2400 analyzer from Micromeritics (USA), methods. Experiments of catalytic and non-catalytic upgrading processes were carried out in a discontinuous reactor at a temperature of 300 °C and 72 bars for 24 h and 2% of catalyst ratio to the total weight of heavy crude oil. XRD analysis revealed that the use of nanoparticles of NiO significantly participated in the upgrading processes (by desulfurization) where different activated form catalysts were observed, such as α-NiS, β-NiS, Ni3S4, Ni9S8, and NiO. The results of viscosity analysis, elemental analysis, and 13C NMR analysis revealed that the viscosity of heavy crude oil decreased from 2157 to 800 mPa·s, heteroatoms removal from heavy oil ranged from S—4.28% to 3.32% and N—0.40% to 0.37%, and total content of fractions (ΣC8–C25) increased from 59.56% to a maximum of 72.21%, with catalyst-3 thank to isomerization of normal and cyclo-alkanes and dealkylation of lateral chains of aromatics structures, respectively. Moreover, the obtained nanoparticles showed good selectivity, promoting in-situ hydrogenation-dehydrogenation reactions, and hydrogen redistribution over carbons (H/C) is improved, ranging from 1.48 to a maximum of 1.77 in sample catalyst-3. On the other hand, the use of nanoparticle catalysts have also impacted the hydrogen production, where the H2/CO provided from the water gas shift reaction has increased. Nickel oxide catalysts have the potential for in-situ hydrothermal upgrading of heavy crude oil because of their great potential to catalyze the aquathermolysis reactions in the presence of steam

    Modulating the Inclusive and Coordinating Ability of Thiacalix[4]arene and Its Antenna Effect on Yb<sup>3</sup>-Luminescence via Upper-Rim Substitution<xref rid="fn+-20221012160304-1908848" ref-type="fn">+</xref>

    No full text
    The present work introduces the series of thiacalix[4]arenes (H4L) bearing different upper-rim substituents (R = H, Br, NO2) for rational design of ligands providing an antenna-effect on the NIR Yb3+-centered luminescence of their Yb3+ complexes. The unusual inclusive self-assembly of H3L− (Br) through Brπ interactions is revealed through single-crystal XRD analysis. Thermodynamically favorable formation of dimeric complexes [2Yb3+:2HL3−] leads to efficient sensitizing of the Yb3+ luminescence for H4L (Br, NO2), while poor sensitizing is observed for ligand H4L (H). X-ray analysis of the single crystal separated from the basified DMF solutions of YbCl3 and H4L(NO2) has revealed the transformation of the dimeric complexes into [4Yb3+:2L4−] ones with a cubane-like cluster structure. The luminescence characteristics of the complexes in the solutions reveal the peculiar antenna effect of H4L(R = NO2), where the triplet level at 567 nm (17,637 cm−1) arisen from ILCT provides efficient sensitizing of the Yb3+ luminescence

    Single Excited Dual Band Luminescent Hybrid Carbon Dots-Terbium Chelate Nanothermometer

    No full text
    The report introduces hybrid polyelectrolyte-stabilized colloids combining blue and green-emitting building blocks, which are citrate carbon dots (CDs) and [TbL]+ chelate complexes with 1,3-diketonate derivatives of calix[4]arene. The joint incorporation of green and blue-emitting blocks into the polysodium polystyrenesulfonate (PSS) aggregates is carried out through the solvent-exchange synthetic technique. The coordinative binding between Tb3+ centers and CD surface groups in initial DMF solutions both facilitates joint incorporation of [TbL]+ complexes and the CDs into the PSS-based nanobeads and affects fluorescence properties of [TbL]+ complexes and CDs, as well as their ability for temperature sensing. The variation of the synthetic conditions is represented herein as a tool for tuning the fluorescent response of the blue and green-emitting blocks upon heating and cooling. The revealed regularities enable developing either dual-band luminescent colloids for monitoring temperature changes within 25–50 °C through double color emission or transforming the colloids into ratiometric temperature sensors via simple concentration variation of [TbL]+ and CDs in the initial DMF solution. Novel hybrid carbon dots-terbium chelate PSS-based nanoplatform opens an avenue for a new generation of sensitive and customizable single excited dual-band nanothermometers

    Role of PSS-based assemblies in stabilization of Eu and Sm luminescent complexes and their thermoresponsive luminescence

    No full text
    The present work introduces self-assembled polystyrenesulfonate (PSS) molecules as soft nanocapsules for incorporation of Eu3+-Sm3+ complexes by the solvent exchange procedure. The high levels of Eu3+ - and Sm3+- luminescence of the complexes derives from the ligand-to-metal energy transfer, in turn, resulted from the complex formation of Eu3+ and Sm3+ ions with the three recently synthesized cyclophanic 1,3-diketones. The structural features of the ligands are optimized for the high thermal sensitivity of Eu3+- luminescence in DMF solutions. The PSS-nanocapsules (similar to 100 nm) provide both colloid and chemical stabilization of the ultrasmall (3-5 nm) nanoprecipitates of the complexes, although their luminescence spectra patterns and excited state lifetimes differ from the values measured for the complexes in DMF solutions. The specific concentration ratio of the Eu3+-Sm3+ complexes in the DMF solutions allows to tune the intensity ratio of the luminescence bands at 612 and 650 nm in the heterometallic Eu3+-Sm3+ colloids. The thermal sensitivity of the Eu3+- and Sm3+ luminescence of the complexes derives from the static quenching both in PSS-colloids and in DMF solutions, while the thermo-induced dynamic quenching of the luminescence is significant only in DMF solutions. The reversibility of thermo-induced luminescence changes of the Eu3+-Sm3+ colloids is demonstrated by six heating-cooling cycles. The DLS measurements before and after the six cycles reveal the invariance of the PSS-based capsule as the prerequisite for the recyclability of the temperature monitoring through the ratio of Eu-3(+)-to-Sm3+ luminescence
    corecore