7 research outputs found

    Diamond-Bearing Root Beneath the Northern East European Platform (Arkhangelsk Region, Russia): Evidence from Cr-Pyrope Trace-Element Geochemistry

    No full text
    In this study, we reconstruct the composition and metasomatic evolution of the lithospheric mantle beneath the poorly-studied southern Arkhangelsk region, based on the geochemistry of 145 Cr-pyrope grains recovered from samples of modern rivers and stream sediments, to evaluate the diamond exploration potential of these territories. Based on the concentrations of Cr2O3, CaO, TiO2, and rare earth elements (REEs), the garnets are divided into four groups: (1) low-chromium lherzolitic pyropes with fractionated heavy REE patterns; (2) low- to medium-chromium pyropes of lherzolitic and megacryst associations with flat heavy REE patterns; (3) high-chromium lherzolitic pyropes with “humped” REE patterns; and (4) high-chromium and low-chromium lherzolitic and harzburgitic pyropes with sinusoidal REE patterns. The pyrope geochemistry suggests a multi-stage model for the evolution of the lithospheric mantle, including partial melting to different degrees and further metasomatic overprints by silicate and carbonatite melts. The results confirm that the lithospheric mantle beneath the study area is suitable for the formation and preservation of diamonds. The significant percentage of diamond-associated pyropes (15%) emphasizes the likelihood of high diamond contents in kimberlites to be discovered within the study area

    The Geochemical features of the garnets from peridotites of Udachnaya pipe (Yakutia)

    No full text
    Study of mantle xenoliths from the kimberlite pipes allows to get an important information about the origin and transformations of the lithosphere substance. The most deep-seated rocks of the lithospheric mantle are deformed peridotites, having the features of recrystallization and structures of the flow. These rocks undergo significant transformations and enrichment with different components under the effect of asthenospheric melts penetrating by the cracks and faults. The most depleted rocks which are not affected by the enrichment processes are supposed to be the megacrystalline dunites. The garnets from 5 deformed lherzolites (mineral composition: olivine, orthopyroxene, clinopyroxene, garnet), and 20 megacrystalline harzburgite-dunites (mineral composition: olivine, garnet, sometimes chromite, orthopyroxene) from the kimberlite pipe Udachnaya (Yakutia) were analyzed by the LAM-ICPMS. The chondrite normalized REE patterns of garnets from deformed lherzolites are mostly characterized by smooth increasing of LREE values with gradation in the field of HREE. The distribution curves of REE in garnets of megacrystalline dunites have highly sinusoidal character. The very big difference in REE values is seen in the width of dunite field. It shows the different degree and time of their enrichment. The most of distribution curves for garnets of megacrystalline dunites have the peaks at the LREE and MREE showing increased Ce (7 samples), Pr (4 samples), Nd (7 samples), Sm (2 samples) concentrations proving early enrichment. The sharp sinusoidality of REE distribution curves, early enrichment with the LREE prove that some garnets of studied dunites were not in the equilibrium with the melt. In general these garnets could be formed as a result of transformation of earlier chromites, which is confirmed by the increased Cr-concentration in them (for example, garnet UV167/09 contains 11.84 wt.% Cr₂O₃), either as a result of exsolution of primary Al, Cr-containing orthopyroxene, presenting in garzburgites.1 page(s

    Types of Xenogenic Olivine from Siberian Kimberlites

    No full text
    This work is devoted to the systematization of the composition of xenogenic olivine from kimberlites as the main mineral composing the lithospheric mantle. Based on data on the composition of olivines from xenoliths and megacrysts from kimberlites, a general division into four types is proposed: olivines of ultrahigh-temperature (HTP-1), high-temperature (HTP-2) and low-temperature (LTP) peridotites, as well as olivines of low-chromium megacryst association (MCA). The separation scheme uses the CaO content as an indicator of the formation temperature and the Mg/(Mg + Fe) ratio as an indicator of the degree of enrichment in olivines. In contrast to Al, the Ca content in olivines from cratonic peridotites is high enough to use only EPMA when applying the proposed scheme. According to this scheme the study of more than 1500 individual olivine xenocrysts from a number of kimberlite bodies of the Siberian platform was made. It revealed three characteristic distributions of olivine types: without high-temperature differences (Obnazhennaya pipe), with significant development of HTP-2 (Olivinovaya and Vtorogodnitsa pipes), and with a significant development of HTP-1 (Dianga pipe). Only the latter type of distribution is characterized by the presence of a noticeable amount of megacryst association olivines. The study of other minor elements (TiO2 and NiO) in olivines allowed us to propose a model for the formation of high-temperature olivines of two different types due to the interaction of megacryst melt of various fractionation stages on depleted rocks of the lithospheric mantle. HTP-2 olivines arose upon exposure to a fractionated melt of the late stages of crystallization, and HTP-1 olivines appeared upon exposure to unfractionated (less enriched with incompatible components) megacryst melt at higher temperatures of the initial stage of crystallization

    Kimberlite genesis and mantle metasomatism: insights from in situ U-Pb dating of single garnet xenocrysts

    No full text
    Garnet xenocrysts from kimberlites provide unique insights into the composition, structure and evolution of the subcontinental lithospheric mantle (SCLM). For example, different metasomatic events in the SCLM are reflected in compositional differences between garnet xenocrysts. As mantle metasomatism largely controls the physical and chemical properties of the SCLM, it exerts first order control over the genesis of kimberlitic magmas and diamond formation. However, dating mantle lithologies and processes is complicated by high ambient temperatures that allow the equilibration of most isotopic systems up to the time of kimberlite eruption. As a consequence, the temporal connection between metasomatic events in the mantle and kimberlite genesis is commonly ambiguous. In this study, we applied LA-ICPMS U-Pb dating to 43 harzburgitic, lherzolithic and megacrystic garnet xenocrysts from the ~376 Ma diamondiferous V. Grib kimberlite, Russia, in order to investigate the link between different types of mantle metasomatism and kimberlite genesis. Our results indicate that, with two possible exceptions, only harzburgitic garnet overlaps in age with the kimberlite eruption, whereas lherzolitic and megacrystic garnet crystals are ~20 to 130 million years older. Furthermore, garnet U-Pb ages and Ni-in-garnet temperatures of ~820 to 1200 °C do not correlate. This, and the high closure temperature of U-Pb in garnet (≥900 °C) suggests that the garnet U-Pb ages indeed reflect metasomatic events in the SCLM. However, the U-Pb ages could also reflect cooling ages. In this case, the metasomatic events recorded in the garnet crystals must still have occurred up to ~130 million years prior to the eruption of the V. Grib kimberlite. These findings have far-reaching implications for the genesis of (diamondiferous) kimberlites, as they clearly show that the time lag between metasomatic events in the SCLM, as recorded in kimberlitic garnet xenocrysts, and kimberlite eruption may extend to tens of millions of years

    Growth Story of One Diamond: A Window to the Lithospheric Mantle

    No full text
    A diamond plate cut out of a transparent, colorless octahedral diamond crystal of gem quality, with a small chromite inclusion in the core, sampled from the XXIII CPSU Congress kimberlite (Yakutia, Mirny kimberlite field, vicinities of Mirny city), has been studied by several combined methods: absorption spectroscopy at different wavelengths (UV-visible, near- and mid-IR); photoluminescence, cathodoluminescence, and Raman spectroscopy (local version) and lattice strain mapping; birefringence in cross-polarized light; and etching. The diamond plate demonstrates a complex growth history consisting of four stages: nucleation and growth to an octahedron → habit change to a cuboid → habit change to octahedron-1 → habit change to octahedron-2. The growth history of the diamond records changes in the crystallization conditions at each stage. The revealed heterogeneity of the crystal structure is associated with the distribution and speciation of nitrogen defects. The results of this study have implications for the information value of different techniques as to the diamond structure defects, as well as for the as yet poorly known evolution of the subcontinental lithospheric mantle in the Siberian craton, recorded in the multistage growth of the diamond crystal. At the time of writing, reconstructing the conditions for each stage is difficult. Meanwhile, finding ways for such reconstruction is indispensable for a better understanding of diamond genesis, and details of the lithosphere history

    40Ar/39Ar Geochronology and New Mineralogical and Geochemical Data from Lamprophyres of Chompolo Field (South Yakutia, Russia)

    No full text
    The alkaline igneous rocks of the Chompolo field (Aldan shield, Siberian craton), previously defined as kimberlites or lamproites, are more correctly classified as low-Ti lamprophyres. The emplacement age of the Ogonek pipe (137.8 ± 1.2 Ma) and the Aldanskaya dike (157.0 ± 1.6 Ma) was obtained using 40Ar/39Ar K-richterite dating. The Chompolo rocks contain abundant xenocrysts of mantle minerals (chromium-rich pyropic garnets, Cr-diopsides, spinels, etc.). The composition of the mantle xenocrysts indicates the predominance of spinel and garnet–spinel lherzolites, while the presence of garnet lherzolites, dunites, harzburgites, and eclogites is minor. The Chompolo rocks are characterized by large-ion lithophile element (LILE) and Light Rare Earth Element (LREE) enrichments, and high field strength element (HFSE) depletions. The rocks of the Ogonek pipe have radiogenic Sr (87Sr/86Sr (t) = 0.70775 and 0.70954), and highly unradiogenic εNd(t) (−20.03 and −20.44) isotopic composition. The trace element and isotopic characteristics of the Chompolo rocks are indicative of the involvement of subducted materials in their ancient enriched lithospheric mantle source. The Chompolo rocks were formed at the stage when the Mesozoic igneous activity was triggered by global tectonic events. The Chompolo field of alkaline magmatism is one of the few available geological objects, which provides the opportunity to investigate the subcontinental lithospheric mantle beneath the south part of the Siberian craton
    corecore