55 research outputs found

    A photon loss tolerant Zeno CSIGN gate

    Get PDF
    We model an optical implementation of a CSIGN gate that makes use of the Quantum Zeno effect [1,2] in the presence of photon loss. The raw operation of the gate is severely affected by this type of loss. However, we show that by using the same photon loss codes that have been proposed for linear optical quantum computation (LOQC), the performance is greatly enhanced and such gates can outperform LOQC equivalents. The technique can be applied to other types of nonlinearities, making the implementation of nonlinear optical gates much more attractive

    Quantum walks with encrypted data

    Full text link
    In the setting of networked computation, data security can be a significant concern. Here we consider the problem of allowing a server to remotely manipulate client supplied data, in such a way that both the information obtained by the client about the server's operation and the information obtained by the server about the client's data are significantly limited. We present a protocol for achieving such functionality in two closely related models of restricted quantum computation -- the Boson sampling and quantum walk models. Due to the limited technological requirements of the Boson scattering model, small scale implementations of this technique are feasible with present-day technology.Comment: 4 pages, 2 figure

    Optimal tracking for pairs of qubit states

    Get PDF
    In classical control theory, tracking refers to the ability to perform measurements and feedback on a classical system in order to enforce some desired dynamics. In this paper we investigate a simple version of quantum tracking, namely, we look at how to optimally transform the state of a single qubit into a given target state, when the system can be prepared in two different ways, and the target state depends on the choice of preparation. We propose a tracking strategy that is proved to be optimal for any input and target states. Applications in the context of state discrimination, state purification, state stabilization and state-dependent quantum cloning are presented, where existing optimality results are recovered and extended.Comment: 15 pages, 8 figures. Extensive revision of text, optimality results extended, other physical applications include

    Generating optical nonlinearity using trapped atoms

    Get PDF
    We describe a scheme for producing an optical nonlinearity using an interaction with one or more ancilla two-level atomic systems. The nonlinearity, which can be implemented using high efficiency fluorescence shelving measurements, together with general linear transformations is sufficient for simulating arbitrary Hamiltonian evolution on a Fock state qudit. We give two examples of the application of this nonlinearity, one for the creation of nonlinear phase shifts on optical fields as required in single photon quantum computation schemes, and the other for the preparation of optical Schrodinger cat states.Comment: Substantially extended from quant-ph/020815

    Efficient Parity Encoded Optical Quantum Computing

    Get PDF
    We present a linear optics quantum computation scheme with a greatly reduced cost in resources compared to KLM. The scheme makes use of elements from cluster state computation and achieves comparable resource usage to those schemes while retaining the circuit based approach of KLM

    Encoding qubits into oscillators with atomic ensembles and squeezed light

    Get PDF
    The Gottesman-Kitaev-Preskill (GKP) encoding of a qubit within an oscillator provides a number of advantages when used in a fault-tolerant architecture for quantum computing, most notably that Gaussian operations suffice to implement all single- and two-qubit Clifford gates. The main drawback of the encoding is that the logical states themselves are challenging to produce. Here we present a method for generating optical GKP-encoded qubits by coupling an atomic ensemble to a squeezed state of light. Particular outcomes of a subsequent spin measurement of the ensemble herald successful generation of the resource state in the optical mode. We analyze the method in terms of the resources required (total spin and amount of squeezing) and the probability of success. We propose a physical implementation using a Faraday-based quantum non-demolition interaction.Comment: (v2) consistent with published version; (v1) 16 pages, 5 figure

    Scalable boson-sampling with time-bin encoding using a loop-based architecture

    Full text link
    We present an architecture for arbitrarily scalable boson-sampling using two nested fiber loops. The architecture has fixed experimental complexity, irrespective of the size of the desired interferometer, whose scale is limited only by fiber and switch loss rates. The architecture employs time-bin encoding, whereby the incident photons form a pulse train, which enters the loops. Dynamically controlled loop coupling ratios allow the construction of the arbitrary linear optics interferometers required for boson-sampling. The architecture employs only a single point of interference and may thus be easier to stabilize than other approaches. The scheme has polynomial complexity and could be realized using demonstrated present-day technologies.Comment: 7 pages, 7 figure
    corecore