69 research outputs found

    Langmuir adsorption processes and ion transport under bias potential in capacitive deionisation cells

    Get PDF
    The electric response of a capacitive deionisation cell submitted to a periodic external electric field is investigated. The case in which the applied potential has a nonzero average value on one period (polarised cell) is considered. The theoretical analysis of the experimental data, relevant to nearly symmetric electrodes, is done in the framework of the Poisson-Nernst-Planck model. The current densities on the electrodes are described by kinetic equations related to the adsorption phenomenon in the presence of a bias potential. We propose a new form for the Langmuir isotherm in which the effective adsorption coefficients depend on the bias potential according to the Boltzmann statistics. This kinetic equation extends the Butler-Volmer equation for non-blocking electrodes also to the blocking ones. The equation proposed here is such that for dc external voltage the total current across the electrodes vanishes

    Significance of small voltage in impedance spectroscopy measurements on electrolytic cells

    Get PDF
    We investigate, theoretically, for what amplitude of the applied voltage to an electrolytic cell the concept of impedance is meaningful. The analysis is performed by means of a continuum model, by assuming the electrodes perfectly blocking. We show that, in the low-frequency range, the electrolytic cell behaves as a linear system only if the amplitude of the measurement voltage is small with respect to the thermal voltage V(T)=k(B)T/q, where k(B)T is the thermal energy, and q is the modulus of the electrical charge of the ions, assumed identical except for the sign of the charge. On the contrary, for large frequency, we prove that the amplitude of the applied signal has to be small with respect to a critical voltage that is frequency dependent. The same kind of analysis is presented for the case in which the diffusion coefficients of the positive ions is different from that for negative ions, and for the case where surface adsorption takes place

    A model for electrode effects based on adsorption theory

    Get PDF
    A model to describe the electrode effects based on the adsorption theory is proposed. We assume that the coverage (i.e by gas bubbles, electrodeposition of compounds, etc) of the electrodes is governed by a kinetics equation where the adsorption term is proportional to the bulk current density, and the desorption term to the actual coverage. The adsorption can take place only on the uncovered part of the electrode. We show that the coverage is responsible for a variation of the interface properties of the electrode. The time dependence of the electric response of the cell, submitted to an external voltage, is determined by solving the differential equation for the coverage. We show that two regimes are expected. One, in the limit of small time, controlled by the charging of the surface interface, and one related to the coverage. The theoretical predictions are in reasonable agreement with the experimental data concerning the time dependence of the current and the current-voltage characteristics of a home-made photo-electrolyzer constituted by a BiVO4 photoanode and a Pt cathode. Moreover, a normalized current-voltage curve was obtained, which fit also literature data based on (i) electrolysis on cylindrical stainless-steel electrodes in NaOH electrolyte and (ii) electrolytic plasma nitrocarburizing of AISI 1020 steel discs in an Urea-based aqueous solution, demonstrating the versatility and broad range of application of the here proposed model

    Sensitive methods for estimating the anchoring strength of nematic liquid crystals on Langmuir-Blodgett monolayers of fatty acids

    Full text link
    The anchoring of the nematic liquid crystal N-(p-methoxybenzylidene)-p-butylaniline (MBBA) on Langmuir-Blodgett monolayers of fatty acids (COOHCn_{n}H2n+1_{2n+1}) was studied as a function of the length of the fatty acid alkyl chains, nn (n=15,17,19,21n = 15, 17, 19, 21). The monolayers were deposited onto ITO-coated glass plates which were used to assemble sandwich cells of various thickness that were filled with MBBA in the nematic phase. The mechanism of relaxation from the flow-induced quasi-planar to the surface-induced homeotropic alignment was studied for the four decreases linearly with increasing the length of the alkyl chains nn which suggests that the Langmuir-Blodgett film plays a role in the phenomenon. This fact was confirmed by a sensitive estimation of the anchoring strength of MBBA on the fatty acid monolayers after anchoring breaking which takes place at the transition between two electric-field--induced turbulent states, denoted as DSM1 and DSM2. It was found that the threshold electric field for the anchoring breaking, which can be considered as a measure of the anchoring strength, also decreases linearly as nn increases. Both methods thus possess a high sensitivity in resolving small differences in anchoring strength. In cells coated with mixed Langmuir-Blodgett monolayers of two fatty acids (n=15n=15 and n=17n=17) a maximum of the relaxation speed was observed when the two acids were present in equal amount. This observation homeotropic cells by changing the ratio between the components of the surfactant film.Comment: LaTeX article, 20 pages, 15 figures, 17 EPS files. 1 figure added, references moved. Submitted to Phys. Rev.
    • …
    corecore