241 research outputs found
Conformal Spinning Quantum Particles in Complex Minkowski Space as Constrained Nonlinear Sigma Models in U(2,2) and Born's Reciprocity
We revise the use of 8-dimensional conformal, complex (Cartan) domains as a
base for the construction of conformally invariant quantum (field) theory,
either as phase or configuration spaces. We follow a gauge-invariant Lagrangian
approach (of nonlinear sigma-model type) and use a generalized Dirac method for
the quantization of constrained systems, which resembles in some aspects the
standard approach to quantizing coadjoint orbits of a group G. Physical wave
functions, Haar measures, orthonormal basis and reproducing (Bergman) kernels
are explicitly calculated in and holomorphic picture in these Cartan domains
for both scalar and spinning quantum particles. Similarities and differences
with other results in the literature are also discussed and an extension of
Schwinger's Master Theorem is commented in connection with closure relations.
An adaptation of the Born's Reciprocity Principle (BRP) to the conformal
relativity, the replacement of space-time by the 8-dimensional conformal domain
at short distances and the existence of a maximal acceleration are also put
forward.Comment: 33 pages, no figures, LaTe
Are magnetic monopoles at the origin of magneto-electricity in spin ices?
The possibilities of combining several degrees of freedom inside a unique
material have recently been highlighted in their dynamics and proposed as
information carriers in quantum devices where their cross-manipulation by
external parameters such as electric and magnetic fields could enhance their
functionalities. An emblematic example is that of electromagnons, spin-waves
dressed with electric dipoles, that are fingerprints of multiferroics.
Point-like objects have also been identified, which may take the form of
excited quasiparticles. This is the case for magnetic monopoles, the exotic
excitations of spin ices, that have been recently proposed to carry an electric
dipole although experimental evidences remain elusive. Presently, we
investigate the electrical signature of a classical spin ice and a related
compound that supports quantum fluctuations. Our in-depth study clearly
attributes magnetoelectricity to the correlated spin ice phase distinguishing
it from extrinsic and single-ion effects. Our calculations show that the
proposed model conferring magnetoelectricity to monopoles is not sufficient,
calling for higher order contributions
Renormalization of the Hamiltonian and a geometric interpretation of asymptotic freedom
Using a novel approach to renormalization in the Hamiltonian formalism, we
study the connection between asymptotic freedom and the renormalization group
flow of the configuration space metric. It is argued that in asymptotically
free theories the effective distance between configuration decreases as high
momentum modes are integrated out.Comment: 22 pages, LaTeX, no figures; final version accepted in Phys.Rev.D;
added reference and appendix with comment on solution of eq. (9) in the tex
The Fuzzy Disc
We introduce a finite dimensional matrix model approximation to the algebra
of functions on a disc based on noncommutative geometry. The algebra is a
subalgebra of the one characterizing the noncommutative plane with a * product
and depends on two parameters N and theta. It is composed of functions which
decay exponentially outside a disc. In the limit in which the size of the
matrices goes to infinity and the noncommutativity parameter goes to zero the
disc becomes sharper. We introduce a Laplacian defined on the whole algebra and
calculate its eigenvalues. We also calculate the two--points correlation
function for a free massless theory (Green's function). In both cases the
agreement with the exact result on the disc is very good already for relatively
small matrices. This opens up the possibility for the study of field theories
on the disc with nonperturbative methods. The model contains edge states, a
fact studied in a similar matrix model independently introduced by
Balachandran, Gupta and Kurkcuoglu.Comment: 17 pages, 8 figures, references added and correcte
Speculations on Primordial Magnetic Helicity
We speculate that above or just below the electroweak phase transition
magnetic fields are generated which have a net helicity (otherwise said, a
Chern-Simons term) of order of magnitude , where is the
baryon or lepton number today. (To be more precise requires much more knowledge
of B,L-generating mechanisms than we currently have.) Electromagnetic helicity
generation is associated (indirectly) with the generation of electroweak
Chern-Simons number through B+L anomalies. This helicity, which in the early
universe is some 30 orders of magnitude greater than what would be expected
from fluctuations alone in the absence of B+L violation, should be reasonably
well-conserved through the evolution of the universe to around the times of
matter dominance and decoupling, because the early universe is an excellent
conductor. Possible consequences include early structure formation; macroscopic
manifestations of CP violation in the cosmic magnetic field (measurable at
least in principle, if not in practice); and an inverse-cascade dynamo
mechanism in which magnetic fields and helicity are unstable to transfer to
larger and larger spatial scales. We give a quasi-linear treatment of the
general-relativistic MHD inverse cascade instability, finding substantial
growth for helicity of the assumed magnitude out to scales , where is roughly the B+L to photon ratio and
is the magnetic correlation length. We also elaborate further on an
earlier proposal of the author for generation of magnetic fields above the EW
phase transition.Comment: Latex, 23 page
On One-Loop Gap Equations for the Magnetic Mass in d=3 Gauge Theory
Recently several workers have attempted determinations of the so-called
magnetic mass of d=3 non-Abelian gauge theories through a one-loop gap
equation, using a free massive propagator as input. Self-consistency is
attained only on-shell, because the usual Feynman-graph construction is
gauge-dependent off-shell. We examine two previous studies of the pinch
technique proper self-energy, which is gauge-invariant at all momenta, using a
free propagator as input, and show that it leads to inconsistent and unphysical
result. In one case the residue of the pole has the wrong sign (necessarily
implying the presence of a tachyonic pole); in the second case the residue is
positive, but two orders of magnitude larger than the input residue, which
shows that the residue is on the verge of becoming ghostlike. This happens
because of the infrared instability of d=3 gauge theory. A possible alternative
one-loop determination via the effective action also fails. The lesson is that
gap equations must be considered at least at two-loop level.Comment: 21 pages, LaTex, 2 .eps figure
An approach to exact solutions of the time-dependent supersymmetric two-level three-photon Jaynes-Cummings model
By utilizing the property of the supersymmetric structure in the two-level
multiphoton Jaynes-Cummings model, an invariant is constructed in terms of the
supersymmetric generators by working in the sub-Hilbert-space corresponding to
a particular eigenvalue of the conserved supersymmetric generators. We obtain
the exact solutions of the time-dependent Schr\"{o}dinger equation which
describes the time-dependent supersymmetric two-level three-photon
Jaynes-Cummings model (TLTJCM) by using the invariant-related unitary
transformation formulation. The case under the adiabatic approximation is also
discussed.
Keywords: Supersymmetric Jaynes-Cummings model; exact solutions; invariant
theory; geometric phase factor; adiabatic approximationComment: 7 pages, Late
On plane wave and vortex-like solutions of noncommutative Maxwell-Chern-Simons theory
We investigate the spectrum of the gauge theory with Chern-Simons term on the
noncommutative plane, a modification of the description of the Quantum Hall
fluid recently proposed by Susskind. We find a series of the noncommutative
massive ``plane wave'' solutions with polarization dependent on the magnitude
of the wave-vector. The mass of each branch is fixed by the quantization
condition imposed on the coefficient of the noncommutative Chern-Simons term.
For the radially symmetric ansatz a vortex-like solution is found and
investigated. We derive a nonlinear difference equation describing these
solutions and we find their asymptotic form. These excitations should be
relevant in describing the Quantum Hall transitions between plateaus and the
end transition to the Hall Insulator.Comment: 17 pages, LaTeX (JHEP), 1 figure, added references, version accepted
to JHE
Center Vortices, Nexuses, and the Georgi-Glashow Model
In a gauge theory with no Higgs fields the mechanism for confinement is by
center vortices, but in theories with adjoint Higgs fields and generic symmetry
breaking, such as the Georgi-Glashow model, Polyakov showed that in d=3
confinement arises via a condensate of 't Hooft-Polyakov monopoles. We study
the connection in d=3 between pure-gauge theory and the theory with adjoint
Higgs by varying the Higgs VEV v. As one lowers v from the Polyakov semi-
classical regime v>>g (g is the gauge coupling) toward zero, where the unbroken
theory lies, one encounters effects associated with the unbroken theory at a
finite value v\sim g, where dynamical mass generation of a gauge-symmetric
gauge- boson mass m\sim g^2 takes place, in addition to the Higgs-generated
non-symmetric mass M\sim vg. This dynamical mass generation is forced by the
infrared instability (in both 3 and 4 dimensions) of the pure-gauge theory. We
construct solitonic configurations of the theory with both m,M non-zero which
are generically closed loops consisting of nexuses (a class of soliton recently
studied for the pure-gauge theory), each paired with an antinexus, sitting like
beads on a string of center vortices with vortex fields always pointing into
(out of) a nexus (antinexus); the vortex magnetic fields extend a transverse
distance 1/m. An isolated nexus with vortices is continuously deformable from
the 't Hooft-Polyakov (m=0) monopole to the pure-gauge nexus-vortex complex
(M=0). In the pure-gauge M=0 limit the homotopy (or its
analog for SU(N)) of the 't Hooft monopoles is no longer applicable, and is
replaced by the center-vortex homotopy .Comment: 27 pages, LaTeX, 3 .eps figure
- …