6 research outputs found

    Largen: A Molecular Regulator of Mammalian Cell Size Control

    Get PDF
    Little is known about how mammalian cells maintain cell size homeostasis. We conducted a novel genetic screen to identify cell-size-controlling genes and isolated Largen, the product of a gene (PRR16) that increased cell size upon overexpression in human cells. Invitro evidence indicated that Largen preferentially stimulates the translation of specific subsetsof mRNAs, including those encoding proteins affecting mitochondrial functions. The involvement of Largen in mitochondrial respiration was consistentwith the increased mitochondrial mass and greater ATP production in Largen-overexpressing cells. Furthermore, Largen overexpression led to increased cell size invivo, as revealed by analyses of conditional Largen transgenic mice. Our results establish Largen as an important link between mRNA translation, mitochondrial functions, and the control of mammalian cell size

    Expanding the search for genetic biomarkers of Parkinson\u27s disease into the living brain

    No full text
    Altered gene expression related to Parkinson\u27s Disease (PD) has not been described in the living brain, yet this information may support novel discovery pertinent to disease pathophysiology and treatment. This study compared the transcriptome in brain biopsies obtained from living PD and Control patients. To evaluate the novelty of this data, a comprehensive literature review also compared differentially expressed gene (DEGs) identified in the current study with those reported in PD cadaveric brain and peripheral tissues. RNA was extracted from rapidly cryopreserved frontal lobe specimens collected from PD and Control patients undergoing neurosurgical procedures. RNA sequencing (RNA-Seq) was performed and validated using quantitative polymerase chain reaction. DEG data was assessed using bioinformatics and subsequently included within a comparative analysis of PD RNA-Seq studies. 370 DEGs identified in living brain specimens reflected diverse gene groups and included key members of trophic signaling, apoptosis, inflammation and cell metabolism pathways. The comprehensive literature review yielded 7 RNA-Seq datasets generated from blood, skin and cadaveric brain but none from a living brain source. From the current dataset, 123 DEGs were identified only within the living brain and 267 DEGs were either newly found or had distinct directional change in living brain relative to other tissues. This is the first known study to analyze the transcriptome in brain tissue from living PD and Control patients. The data produced using these methods offer a unique, unexplored resource with potential to advance insight into the genetic associations of PD

    Disruption of DDX53 coding sequence has limited impact on iPSC-derived human NGN2 neurons

    No full text
    Abstract Background The X-linked PTCHD1 locus is strongly associated with autism spectrum disorder (ASD). Males who carry chromosome microdeletions of PTCHD1 antisense long non-coding RNA (PTCHD1-AS)/DEAD-box helicase 53 (DDX53) have ASD, or a sub-clinical form called Broader Autism Phenotype. If the deletion extends beyond PTCHD1-AS/DDX53 to the next gene, PTCHD1, which is protein-coding, the individuals typically have ASD and intellectual disability (ID). Three male siblings with a 90 kb deletion that affects only PTCHD1-AS (and not including DDX53) have ASD. We performed a functional analysis of DDX53 to examine its role in NGN2 neurons. Methods We used the clustered regularly interspaced short palindromic repeats (CRISPR) gene editing strategy to knock out DDX53 protein by inserting 3 termination codons (3TCs) into two different induced pluripotent stem cell (iPSC) lines. DDX53 CRISPR-edited iPSCs were differentiated into cortical excitatory neurons by Neurogenin 2 (NGN-2) directed differentiation. The functional differences of DDX53-3TC neurons compared to isogenic control neurons with molecular and electrophysiological approaches were assessed. Results Isogenic iPSC-derived control neurons exhibited low levels of DDX53 transcripts. Transcriptional analysis revealed the generation of excitatory cortical neurons and DDX53 protein was not detected in iPSC-derived control neurons by western blot. Control lines and DDX53-3TC neurons were active in the multi-electrode array, but no overt electrophysiological phenotype in either isogenic line was observed. Conclusion DDX53-3TC mutation does not alter NGN2 neuronal function in these experiments, suggesting that synaptic deficits causing ASD are unlikely in this cell type

    Complete Disruption of Autism-Susceptibility Genes by Gene Editing Predominantly Reduces Functional Connectivity of Isogenic Human Neurons

    No full text
    Summary: Autism spectrum disorder (ASD) is phenotypically and genetically heterogeneous. We present a CRISPR gene editing strategy to insert a protein tag and premature termination sites creating an induced pluripotent stem cell (iPSC) knockout resource for functional studies of ten ASD-relevant genes (AFF2/FMR2, ANOS1, ASTN2, ATRX, CACNA1C, CHD8, DLGAP2, KCNQ2, SCN2A, TENM1). Neurogenin 2 (NGN2)-directed induction of iPSCs allowed production of excitatory neurons, and mutant proteins were not detectable. RNA sequencing revealed convergence of several neuronal networks. Using both patch-clamp and multi-electrode array approaches, the electrophysiological deficits measured were distinct for different mutations. However, they culminated in a consistent reduction in synaptic activity, including reduced spontaneous excitatory postsynaptic current frequencies in AFF2/FMR2-, ASTN2-, ATRX-, KCNQ2-, and SCN2A-null neurons. Despite ASD susceptibility genes belonging to different gene ontologies, isogenic stem cell resources can reveal common functional phenotypes, such as reduced functional connectivity. : In this article, Scherer and colleagues present a human induced pluripotent stem cell (iPSC) knockout resource for functional studies of ten genes associated with autism spectrum disorder. They also show that some of these genes, pertaining to diverse functional categories, can underlie common phenotypes in CRISPR-isogenic iPSC-derived glutamatergic neurons. Keywords: iPSC, CRISPR, isogenic, knockout, StopTag, NGN2, autism, convergence, sEPS
    corecore