2,218 research outputs found

    On choice of connection in loop quantum gravity

    Get PDF
    We investigate the quantum area operator in the loop approach based on the Lorentz covariant hamiltonian formulation of general relativity. We show that there exists a two-parameter family of Lorentz connections giving rise to Wilson lines which are eigenstates of the area operator. For each connection the area spectrum is evaluated. In particular, the results of the su(2) approach turn out to be included in the formalism. However, only one connection from the family is a spacetime connection ensuring that the 4d diffeomorphism invariance is preserved under quantization. It leads to the area spectrum independent of the Immirzi parameter. As a consequence, we conclude that the su(2) approach must be modified accordingly to the results obtained since it breaks one of the classical symmetries.Comment: 11 pages, RevTEX; minor changes; a sign mistake correcte

    Polaron and bipolaron transport in a charge segregated state of doped strongly correlated 2D semiconductor

    Full text link
    The 2D lattice gas model with competing short and long range interactions is appliedused for calculation of the incoherent charge transport in the classical strongly-correlated charge segregated polaronic state. We show, by means of Monte-Carlo simulations, that at high temperature the transport is dominated by hopping of the dissociated correlated polarons, where with thetheir mobility is inversely proportional to the temperature. At the temperatures below the clustering transition temperature the bipolaron transport becomes dominant. The energy barrier for the bipolaron hopping is determined by the Coulomb effects and is found to be lower than the barrier for the single-polaron hopping. This leads to drastically different temperature dependencies of mobilities for polarons and bipolarons at low temperatures

    Hilbert space structure of covariant loop quantum gravity

    Full text link
    We investigate the Hilbert space in the Lorentz covariant approach to loop quantum gravity. We restrict ourselves to the space where all area operators are simultaneously diagonalizable, assuming that it exists. In this sector quantum states are realized by a generalization of spin network states based on Lorentz Wilson lines projected on irreducible representations of an SO(3) subgroup. The problem of infinite dimensionality of the unitary Lorentz representations is absent due to this projection. Nevertheless, the projection preserves the Lorentz covariance of the Wilson lines so that the symmetry is not broken. Under certain conditions the states can be thought as functions on a homogeneous space. We define the inner product as an integral over this space. With respect to this inner product the spin networks form an orthonormal basis in the investigated sector. We argue that it is the only relevant part of a larger state space arising in the approach. The problem of the noncommutativity of the Lorentz connection is solved by restriction to the simple representations. The resulting structure shows similarities with the spin foam approach.Comment: 20 pages, RevTE

    Theory of High Temperature Superconductivity in Doped Polar Insulator

    Full text link
    In the last two decades there have been tremendous attempts to built an adequate theory of high-temperature superconductivity. Most studies (including our efforts) used some model Hamiltonians with input parameters not directly related to the material. The dielectric response function of electrons in strongly correlated high-temperature superconductors is apriori unknown. Hence one has to start with the generic Hamiltonian including unscreened Coulomb and Froehlich electron-phonon interactions operating on the same scale since any ad-hoc assumption on their range and relative magnitude might fail. Using such a generic Hamiltonian I have built the analytical theory of high-temperature superconductivity in doped polar insulators predicting the critical temperature in excess of a hundred Kelvin without any adjustable parameters. The many-particle electron system is described by an analytically solvable polaronic "t-Jp" Hamiltonian with reduced hopping integral, t, allowed double on-site occupancy, large phonon-induced antiferromagnetic exchange, Jp >> t, and a high-temperature superconducting state of small superlight bipolarons protected from clustering.Comment: 6 pages, 2 figures, some citations are update

    S-duality in Twistor Space

    Get PDF
    In type IIB string compactifications on a Calabi-Yau threefold, the hypermultiplet moduli space MHM_H must carry an isometric action of the modular group SL(2,Z), inherited from the S-duality symmetry of type IIB string theory in ten dimensions. We investigate how this modular symmetry is realized at the level of the twistor space of MHM_H, and construct a general class of SL(2,Z)-invariant quaternion-Kahler metrics with two commuting isometries, parametrized by a suitably covariant family of holomorphic transition functions. This family should include MHM_H corrected by D3-D1-D(-1)-instantons (with fivebrane corrections ignored) and, after taking a suitable rigid limit, the Coulomb branch of five-dimensional N=2 gauge theories compactified on a torus, including monopole string instantons. These results allow us to considerably simplify the derivation of the mirror map between type IIA and IIB fields in the sector where only D1-D(-1)-instantons are retained.Comment: 29 pages, 1 figur

    D3-instantons, Mock Theta Series and Twistors

    Get PDF
    The D-instanton corrected hypermultiplet moduli space of type II string theory compactified on a Calabi-Yau threefold is known in the type IIA picture to be determined in terms of the generalized Donaldson-Thomas invariants, through a twistorial construction. At the same time, in the mirror type IIB picture, and in the limit where only D3-D1-D(-1)-instanton corrections are retained, it should carry an isometric action of the S-duality group SL(2,Z). We prove that this is the case in the one-instanton approximation, by constructing a holomorphic action of SL(2,Z) on the linearized twistor space. Using the modular invariance of the D4-D2-D0 black hole partition function, we show that the standard Darboux coordinates in twistor space have modular anomalies controlled by period integrals of a Siegel-Narain theta series, which can be canceled by a contact transformation generated by a holomorphic mock theta series.Comment: 42 pages; discussion of isometries is amended; misprints correcte

    Bose-Einstein condensation of strongly correlated electrons and phonons in cuprate superconductors

    Full text link
    The long-range Froehlich electron-phonon interaction has been identified as the most essential for pairing in high-temperature superconductors owing to poor screening, as is now confirmed by optical, isotope substitution, recent photoemission and some other measurements. I argue that low energy physics in cuprate superconductors is that of superlight small bipolarons, which are real-space hole pairs dressed by phonons in doped charge-transfer Mott insulators. They are itinerant quasiparticles existing in the Bloch states at low temperatures as also confirmed by continuous-time quantum Monte-Carlo algorithm (CTQMC) fully taking into account realistic Coulomb and long-range Froehlich interactions. Here I suggest that a parameter-free evaluation of Tc, unusual upper critical fields, the normal state Nernst effect, diamagnetism, the Hall-Lorenz numbers and giant proximity effects strongly support the three-dimensional (3D) Bose-Einstein condensation of mobile small bipolarons with zero off-diagonal order parameter above the resistive critical temperature Tc at variance with phase fluctuation scenarios of cuprates.Comment: 35 pages, 10 figures, to appear in the special volume of Journal of Physics: Condensed Matte

    D-instantons and twistors: some exact results

    Full text link
    We present some results on instanton corrections to the hypermultiplet moduli space in Calabi-Yau compactifications of Type II string theories. Previously, using twistor methods, only a class of D-instantons (D2-instantons wrapping A-cycles) was incorporated exactly and the rest was treated only linearly. We go beyond the linear approximation and give a set of holomorphic functions which, through a known procedure, capture the effect of D-instantons at all orders. Moreover, we show that for a sector where all instanton charges have vanishing symplectic invariant scalar product, the hypermultiplet metric can be computed explicitly.Comment: 32 pages, 3 figures, uses JHEP3.cls; some changes in section 3.3.3; corrected formula for the contact potentia
    • 

    corecore