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Gap and subgap tunnelling in cuprates

A.S. Alexandrov∗ and A.F. Andreev∗∗

* Department of Physics, Loughborough University, Loughborough LE11 3TU, United Kingdom, **P.L. Kapitza Institute for

Physical Problems, Kosygin st.2, 117973- Moscow, GSP-1, Russia

We describe strongly attractive carriers in cuprates in
the framework of a simple quasi-one dimensional Hamiltonian
with a local attraction. In contrast with the conventional BCS
theory there are two energy scales, a temperature independent
incoherent gap ∆p and a temperature dependent coherent gap
∆c(T ) combining into one temperature dependent global gap
∆ = (∆2

p + ∆2

c)
1/2. The temperature dependence of the gap

and single particle (Giaver) tunnelling spectra in cuprates are
quantitatively described. A framework for understanding of
two distinct energy scales observed in Giaver tunnelling and
electron-hole reflection experiments is provided.

PACS numbers:74.20.-z,74.65.+n,74.60.Mj

There is convincing experimental evidence that the
pairing of carriers takes place well above Tc in under-
doped cuprates (for a review see Ref. [1]). If carriers are
paired their magnetic moments compensate each other so
one could expect that the normal state uniform magne-
tization should fall with decreasing temperature because
more and more holes are bound into singlet pairs. This
unexpected drop of the normal state magnetic suscepti-
bility was experimentally observed [2,3] and explained in
the framework of the bipolaron theory of cuprates [4,3].
There is also a gap in the tunnelling and photoemission,
which is almost temperature independent below Tc [5]
and exists well above Tc [6–8], so that some segments of
a ‘large Fermi surface’ are actually missing [9,10]. Ki-
netic [11] and thermodynamic [12] data suggest that the
gap opens in both charge and spin channels and exists
at any relevant temperature in a wide range of doping.
A plausible explanation is that the normal gap is half
of the bipolaron binding energy [1], although alternative
explanations have also been proposed. The temperature
and doping dependence of the gap still remains a sub-
ject of controversy. Moreover, reflection experiments,
in which an incoming electron from the normal side of
a normal/superconducting contact is reflected as a hole
along the same trajectory [13], revealed a much smaller
gap edge than the bias at the tunnelling conductance
maxima in a few underdoped cuprates [14]. Recent in-
trinsic tunnelling measurements on a series of Bi ’2212’
single crystals [15] showed distinctly different behaviour
of the superconducting and normal state gaps with the
magnetic field. Such coexistance of two distinct gaps in
cuprates is not well understood [16,15].

In this letter we propose a model, which describes the
temperature dependence of the gap, tunnelling spectra
and electron-hole reflection in cuprates. The assump-
tion is that the attraction potential in cuprates is large

compared with the Fermi energy. The main point of our
letter is independent of the microscopic nature of the at-
traction. Real-space pairs might be lattice and/or spin
bipolarons [1], or any other preformed pairs.

We start with a generic one-dimensional Hamiltonian
including the kinetic energy of carriers in the effective
mass (m) approximation and a local attraction potential,
V (x− x′) = −Uδ(x− x′) as

H =
∑

s

∫

dxψ†
s(x)

(

−
1

2m

d2

dx2
− µ

)

ψs(x)

− U

∫

dxψ†
↑(x)ψ

†
↓(x)ψ↓(x)ψ↑(x), (1)

where s =↑, ↓ is the spin (h̄ = kB = 1). The first band
to be doped in cuprates is the oxygen band inside the
Hubbard gap as established in polarised photoemission
[17,18]. This band is almost one dimensional as discussed
in Ref. [19], so that our (quasi) one-dimensional approx-
imation is a realistic starting point.

Solving a two-particle problem with the δ-function po-
tential one obtains a bound state with the binding energy

2∆p =
1

4
mU2, (2)

and with the radius of the bound state r = 2/mU . We
assume that this radius is less than the inter-carrier dis-
tance in cuprates, which puts a constraint on the dop-
ing level, EF < 2∆p, where EF is the free-carrier Fermi
energy. Then real-space pairs are formed. If three-
dimensional corrections to the energy spectrum of pairs
are taken into account (see, for example, Ref. [20]) the
ground state of the system is the Bose-Einstein conden-
sate. The chemical potential is pinned below the band
edge by about ∆p both in the superconducting and nor-
mal state [1], so that the normal state single-particle gap
is ∆p. The binding energy 2∆p might change due to the
same corrections. However, this change does not affect
our further results as soon as they are expressed in terms
of ∆p rather than U .

Now we take into account that in the superconduct-
ing state (T < Tc) the single-particle excitations interact
with the condensate via the same potential U . Applying
the Bogoliubov approximation [21] we reduce the Hamil-
tonian, Eq.(1) to a quadratic form as

H =
∑

s

∫

dxψ†
s(x)

(

−
1

2m

d2

dx2
− µ

)

ψs(x)

+

∫

dx[∆cψ
†
↑(x)ψ

†
↓(x) +H.c.], (3)
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where the coherent pairing potential

∆c = −U〈ψ↓(x)ψ↑(x)〉 (4)

is proportional to the square root of the condensate den-
sity, ∆c = constant× n0(T )1/2. The single-particle exci-
tation energy spectrum E(k) is found using the Bogoli-
ubov transformation as

E(k) =
[

(k2/2m+ ∆p)
2 + ∆2

c

]1/2
, (5)

if one assumes that the condensate density does not de-
pend on position. This spectrum is quite different from
the BCS quasiparticles because the chemical potential is
negative, µ = −∆p. The single particle gap, ∆, defined
as the minimum of E(k), is given by

∆ =
[

∆2
p + ∆2

c

]1/2
. (6)

It varies with temperature from

∆(0) =
[

∆2
p + ∆c(0)2

]1/2
at zero temperature down to

the temperature independent ∆p above Tc. The conden-

sate density depends on temperature as 1 − (T/Tc)
d/2

in the ideal three (d = 3) and (quasi) two-dimensional
(d = 2) Bose-gas. In the three-dimensional charged
Bose-gas it has an exponential temperature dependence
at low temperatures due to a plasma gap in the Bogoli-
ubov collective excitation spectrum [22], which might be
highly anisotropic in cuprates [1]. Near Tc one can ex-
pect a power law dependence, n0(T ) ∝ 1− (T/Tc)

n with
n > d/2 because the condensate plasmon [22] depends on
temperature. The theoretical temperature dependence,
Eq.(6) describes well the pioneering experimental obser-
vation of the anomalous gap in Y Ba2Cu3O7−δ in the
electron-energy-loss spectra by Demuth et al [23], Fig.1,
with ∆c(T )2 = ∆c(0)2 × [1− (T/Tc)

n] below Tc and zero
above Tc, and n = 4.

The normal metal-superconductor (SIN) tunnelling
conductance via a dielectric contact, dI/dV is propor-
tional to the density of states, ρ(E) of the spectrum
Eq.(5). Taking also into account the scattering of single-
particle excitations by a random potential, thermal lat-
tice and spin fluctuations one finds at T = 0 [19]

dI/dV = constant× [ρ

(

2eV − 2∆

ǫ0

)

+Aρ

(

−2eV − 2∆

ǫ0

)

],

(7)

with

ρ(ξ) =
4

π2
×
Ai(−2ξ)Ai′(−2ξ) +Bi(−2ξ)Bi′(−2ξ)

[Ai(−2ξ)2 +Bi(−2ξ)2]2
, (8)

A is the asymmetry coefficient [19], Ai(x), Bi(x) the
Airy functions, and ǫ0 is the scattering rate. We com-
pare the conductance, Eq.(7) with one of the best STM
spectra measured in Ni-substituted Bi2Sr2CaCu2O8+x

single crystals by Hancottee et al [5], Fig.2. This ex-
periment showed anomalously large 2∆/Tc > 12 with

the temperature dependence of the gap similar to that
in Fig.1. The theoretical conductance, Eq.(7) describes
well the anomalous gap/Tc ratio, injection/emission as-
symmetry, zero-bias conductance at zero temperature,
and the spectral shape inside and outside the gap region.
There is no doubt that the gap, Fig.2 is s-like, which is
compatible with the phase-sensitive experiments [24] in
the framework of the bipolaron theory [19]. Within the
theory the single-particle gap might be almost k indepen-
dent while the symmetry of the Bose-Einstein condensate
wave-function (i.e. of the order parameter) is d− wave.

Finally, we propose a simple theory of the tunnelling
into bosonic (bipolaronic) superconductor in the metal-
lic (no-barrier) regime. As in the canonical BCS ap-
proach applied to the normal metal-superconductor tun-
nelling by Blonder, Tinkham and Klapwijk [25] and to
the normal-superconductor boundary in the intermedi-
ate type I state by one of us [13], the incoming elec-
tron produces only outgoing particles in the supercon-
ductor (x > l), allowing for a reflected electron and (An-
dreev) hole in the normal metal (x < 0). There is also
a buffer layer of the thickness l at the normal metal-
superconductor boundary ( x = 0), where the chemical
potential with respect to the bottom of the conduction
band changes gradually from a positive large value µ in
the metal to a negative value −∆p in the bosonic super-
conductor. We approximate this buffer layer by a layer
with a constant chemical potential µb (−∆p < µb < µ)
and with the same strength of the pairing potential ∆c as
in the bulk superconductor. The Bogoliubov-de Gennes
equations may be written as usual [25], with the only
difference that the chemical potential with respect to the
bottom of the band is a function of the coordinate x,
(

−(1/2m)d2/dx2 − µ(x) ∆c

∆c (1/2m)d2/dx2 + µ(x)

)

ψ(x)

= Eψ(x). (9)

Thus the two-componet wave function in the normal
metal is given by

ψn(x < 0) =

(

1
0

)

eiq+x + b

(

1
0

)

e−iq+x + a

(

0
1

)

e−iq−x,

(10)

while in the buffer layer it has the form

ψb(0 < x < l) = α

(

1
∆c

E+ξ

)

eip+x + β

(

1
∆c

E−ξ

)

e−ip−x

+ γ

(

1
∆c

E+ξ

)

e−ip+x + δ

(

1
∆c

E−ξ

)

eip−x, (11)

where the momenta associated with the energy E are

q± = [2m(µ± E)]1/2 (12)

and

p± = [2m(µb ± ξ)]1/2 (13)
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with ξ = (E2 −∆2
c)

1/2. The well-behaved solution in the
superconductor with negative chemical potential is given
by

ψs(x > l) = c

(

1
∆c

E+ξ

)

eik+x + d

(

1
∆c

E−ξ

)

eik−x, (14)

where the momenta associated with the energy E are

k± = [2m(−∆p ± ξ)]1/2. (15)

The coefficients a, b, c, d, α, β, γ, δ are determined from
the boundary conditions, which are continuity of ψ(x)
and its derivatives at x = 0 and x = l. Applying the
boundary conditions, and carrying out an algebraic re-
duction, we find

a = 2∆cq
+(p+f−g+ − p−f+g−)/D, (16)

b = −1 + 2q+[(E + ξ)f+(q−f− − p−g−)
− (E − ξ)f−(q−f+ − p+g+)]/D, (17)

with

D = (E + ξ)(q+f+ + p+g+)(q−f− − p−g−)
− (E − ξ)(q+f− + p−g−)(q−f+ − p+g+), (18)

and f± = p± cos(p±l)−ik± sin(p±l), g± = k± cos(p±l)−
ip± sin(p±l).

The transmisson coefficient for electrical current, 1 +
|a|2 − |b|2 is shown in Fig.3 for different values of l when
the coherent gap ∆c is smaller than the pair-breaking
gap ∆p, and in Fig.4 for the opposite case, ∆p < ∆c. In
the first case, Fig.3, we find two distinct energy scales,
one is ∆c in the subgap region due to electron-hole reflec-
tion and the other one is ∆, which is the single-particle
band edge. On the other hand, there is only one gap
∆c, which can be seen in the second case, Fig.4. We
notice that the transmission has no subgap structure if
the buffer layer is absent (l = 0) in both cases. In the
extreme case of a wide buffer layer, l >> (2m∆p)

−1/2,

Fig.3, or l >> (2m∆c)
−1/2, Fig.4, there are some oscilla-

tions of the transmission due to the bound states inside
the buffer layer. It was shown in Ref. [4] that the pair-
breaking gap ∆p is inverse proportional to the doping
level. On the other hand, the coherent gap ∆c scales
with the condensate density, and therefore with the crit-
ical temperature, determined as the Bose-Einstein con-
densation temperature of strongly anisotropic 3D bosons
[20]. Therefore we expect that ∆p >> ∆c in the under-
doped cuprates, Fig.3, while ∆p ≤ ∆c in the optimally
doped cuprates, Fig.4. Thus the model accounts for the
two different gaps experimentally observed in Giaver tun-
nelling and electron-hole reflection in the underdoped
cuprates and for a single gap in the optimally doped sam-
ples [16]. The transmission, Fig.3 and Fig.4, is entirely
due to the coherent tunnelling into the condensate and
(or) into the single-particle band of the bosonic super-
conductor. There is also an incoherent transmission into

localised single-particle impurity states and into incoher-
ent (’supracondensate’) bound pair states, which might
explain a significant featureless background in the subgap
region [14].

In conclusion, we have proposed a simple general
model, which provides an explanation of the tempera-
ture dependence of the gap and of the single-particle tun-
nelling spectra in cuprates. The main assumption is that
the attractive potential is large compared with the Fermi
energy, so that the ground state is the Bose-Einstein con-
densate of tightly bound pairs. We have developed a the-
ory of tunnelling in the metallic regime with no barrier
and found two different energy scales in the transmission
as observed experimentally.

We acknowledge support of this work by the Lever-
hulme Trust (London), grant VP/261.
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Figure Captures

Fig.1. Temperature dependence of the gap, Eq.(6)
(line) compared with the experiment [23](dots) for ∆p =
0.7∆(0) .

Fig.2. Theoretical tunnelling conductance, Eq.(7)
(line) compared with STM conductance in Ni-doped
Bi2Sr2CaCu2O8+x [5]) (dots) for 2∆ = 90 meV, A =
1.05, ǫ0 = 40 meV.

Fig.3. Transmission versus voltage (measured in units
of ∆p/e) for ∆c = 0.2∆p, µ = 10∆p, µb = 2∆p and l = 0
(thick line), l = 1 (thick dashed line), l = 4 (thin line),
and l = 8 (thin dashed line) (in units of 1/(2m∆p)

1/2).
Fig.4. Transmission versus voltage (measured in units

of ∆c/e) for ∆p = 0.2∆c, µ = 10∆c, µb = 2∆c and l = 0
(thick line), l = 1 (thick dashed line), l = 4 (thin line),
and l = 8 (thin dashed line) (in units of 1/(2m∆c)

1/2).
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