6 research outputs found

    Chiral Edge Currents in a Holographic Josephson Junction

    Get PDF
    We discuss the Josephson effect and the appearance of dissipationless edge currents in a holographic Josephson junction configuration involving a chiral, time-reversal breaking, superconductor in 2+1 dimensions. Such a superconductor is expected to be topological, thereby supporting topologically protected gapless Majorana-Weyl edge modes. Such modes manifest themselves in chiral dissipationless edge currents, which we exhibit and investigate in the context of our construction. The physics of the Josephson current itself, though expected to be unconventional in some non-equilibrium settings, is shown to be conventional in our setup which takes place in thermal equilibrium. We comment on various ways in which the expected Majorana nature of the edge excitations, and relatedly the unconventional nature of topological Josephson junctions, can be verified in the holographic context.Comment: 14 pages, 7 figures. Minor change

    Dynamics of Holographic Entanglement Entropy Following a Local Quench

    Full text link
    We discuss the behaviour of holographic entanglement entropy following a local quench in 2+1 dimensional strongly coupled CFTs. The entanglement generated by the quench propagates along an emergent light-cone, reminiscent of the Lieb-Robinson light-cone propagation of correlations in non-relativistic systems. We find the speed of propagation is bounded from below by the entanglement tsunami velocity obtained earlier for global quenches in holographic systems, and from above by the speed of light. The former is realized for sufficiently broad quenches, while the latter pertains for well localized quenches. The non-universal behavior in the intermediate regime appears to stem from finite-size effects. We also note that the entanglement entropy of subsystems reverts to the equilibrium value exponentially fast, in contrast to a much slower equilibration seen in certain spin models.Comment: 27 pages, 12 figures. v2: added refs and fixed typos. v3: added clarifications, published versio

    Numerical investigation of spatial inhomogeneities in gravity and quantum field theory

    No full text
    Many interesting phenomena, such as high-temperature superconductivity and the quark-gluon plasma, still lack a satisfyingly predictive theoretical description. However, recent advances have revealed a curious connection between quantum field theories at strong coupling and classical gravity. This correspondence, known as the gauge/gravity duality or holographic correspondence, offers a promising perspective for investigating strongly correlated systems. In this thesis, we focus on using these new tools to examine the consequences of breaking translational invariance in such systems. We first use this duality to study the holographic realization of a spatially inhomogeneous condensed matter device known as a Josephson junction. We do so by constructing the gravitational equivalent of two superconductors separated by a weak metallic link, from which we then extract various field-theoretic quantities of interest. These include the spontaneously generated Josephson current, the superconducting order parameter, as well as a novel quantity we refer to as edge currents, which are indicative of gapless chiral modes localized at the interfaces between phases. We then investigate the more abstract construct of entanglement entropy in holographic theories. We model the fast local injection of energy in a 2+1 dimensional field theory and study the resulting thermalization of quantum entanglement. We achieve this objective by numerically evolving the geometry dual to a local quench from which we then compute the area of various minimal surfaces, the holographic proxy for entanglement entropy. We observe the appearance of a lightcone featuring two distinct regimes of entanglement propagation and provide a phenomenological explanation of the underlying mechanisms at play. Finally, we turn our attention to spatial inhomogeneities in gravitational systems themselves. We use an approximation of general relativity in which the number of spacetime dimensions is infinite to investigate the Gregory-Laflamme instability of higher-dimensional charged black branes. We argue that charged branes are always unstable in this new language, and push the approximation to next-to-leading order to compute the critical dimension below which the instability results in horizon fragmentation. We also examine the stability properties of two-dimensional black membranes and find that the triangular lattice minimizes brane enthalpy.Science, Faculty ofPhysics and Astronomy, Department ofGraduat
    corecore