14,344 research outputs found

    Do Convolutional Networks need to be Deep for Text Classification ?

    Get PDF
    We study in this work the importance of depth in convolutional models for text classification, either when character or word inputs are considered. We show on 5 standard text classification and sentiment analysis tasks that deep models indeed give better performances than shallow networks when the text input is represented as a sequence of characters. However, a simple shallow-and-wide network outperforms deep models such as DenseNet with word inputs. Our shallow word model further establishes new state-of-the-art performances on two datasets: Yelp Binary (95.9\%) and Yelp Full (64.9\%)

    Two-loop self-energy diagrams worked out with NDIM

    Get PDF
    In this work we calculate two two-loop massless Feynman integrals pertaining to self-energy diagrams using NDIM (Negative Dimensional Integration Method). We show that the answer we get is 36-fold degenerate. We then consider special cases of exponents for propagators and the outcoming results compared with known ones obtained via traditional methods.Comment: LaTeX, 10 pages, 2 figures, styles include

    Prescriptionless light-cone integrals

    Get PDF
    Perturbative quantum gauge field theory seen within the perspective of physical gauge choices such as the light-cone entails the emergence of troublesome poles of the type (k⋅n)−α(k\cdot n)^{-\alpha} in the Feynman integrals, and these come from the boson field propagator, where α=1,2,...\alpha = 1,2,... and nμn^{\mu} is the external arbitrary four-vector that defines the gauge proper. This becomes an additional hurdle to overcome in the computation of Feynman diagrams, since any graph containing internal boson lines will inevitably produce integrands with denominators bearing the characteristic gauge-fixing factor. How one deals with them has been the subject of research for over decades, and several prescriptions have been suggested and tried in the course of time, with failures and successes. However, a more recent development in this front which applies the negative dimensional technique to compute light-cone Feynman integrals shows that we can altogether dispense with prescriptions to perform the calculations. An additional bonus comes attached to this new technique in that not only it renders the light-cone prescriptionless, but by the very nature of it, can also dispense with decomposition formulas or partial fractioning tricks used in the standard approach to separate pole products of the type (k⋅n)−α[(k−p)⋅n]−β(k\cdot n)^{-\alpha}[(k-p)\cdot n]^{-\beta}, (β=1,2,...)(\beta = 1,2,...). In this work we demonstrate how all this can be done.Comment: 6 pages, no figures, Revtex style, reference [2] correcte

    The Boltzmann equation without angular cutoff in the whole space: II, Global existence for hard potential

    Get PDF
    As a continuation of our series works on the Boltzmann equation without angular cutoff assumption, in this part, the global existence of solution to the Cauchy problem in the whole space is proved in some suitable weighted Sobolev spaces for hard potential when the solution is a small perturbation of a global equilibrium
    • …
    corecore