3,166 research outputs found

    A computational approach to the covert and overt deployment of spatial attention

    Get PDF
    Popular computational models of visual attention tend to neglect the influence of saccadic eye movements whereas it has been shown that the primates perform on average three of them per seconds and that the neural substrate for the deployment of attention and the execution of an eye movement might considerably overlap. Here we propose a computational model in which the deployment of attention with or without a subsequent eye movement emerges from local, distributed and numerical computations

    Global hypoelliptic and symbolic estimates for the linearized Boltzmann operator without angular cutoff

    Full text link
    In this article we provide global subelliptic estimates for the linearized inhomogeneous Boltzmann equation without angular cutoff, and show that some global gain in the spatial direction is available although the corresponding operator is not elliptic in this direction. The proof is based on a multiplier method and the so-called Wick quantization, together with a careful analysis of the symbolic properties of the Weyl symbol of the Boltzmann collision operator

    Fast computation of power series solutions of systems of differential equations

    Get PDF
    We propose new algorithms for the computation of the first N terms of a vector (resp. a basis) of power series solutions of a linear system of differential equations at an ordinary point, using a number of arithmetic operations which is quasi-linear with respect to N. Similar results are also given in the non-linear case. This extends previous results obtained by Brent and Kung for scalar differential equations of order one and two

    Microfluidic multipoles: theory and applications

    Get PDF
    Microfluidic multipoles (MFMs) have been realized experimentally and hold promise for "open-space" biological and chemical surface processing. Whereas convective flow can readily be predicted using hydraulic-electrical analogies, the design of advanced MFMs is constrained by the lack of simple, accurate models to predict mass transport within them. In this work, we introduce the first exact solutions to mass transport in multipolar microfluidics based on the iterative conformal mapping of 2D advection-diffusion around a simple edge into dipoles and multipolar geometries, revealing a rich landscape of transport modes. The models were validated experimentally with a library of 3D printed MFM devices and found in excellent agreement. Following a theory-guided design approach, we further ideated and fabricated two new classes of spatiotemporally reconfigurable MFM devices that are used for processing surfaces with time-varying reagent streams, and to realize a multistep automated immunoassay. Overall, the results set the foundations for exploring, developing, and applying open-space MFMs.Comment: 16 pages, 5 figure

    Real scenario and simulations on GLOSA traffic light system for reduced CO2 emissions, waiting time and travel time

    Get PDF
    Cooperative ITS is enabling vehicles to communicate with the infrastructure to provide improvements in traffic control. A promising approach consists in anticipating the road profile and the upcoming dynamic events like traffic lights. This topic has been addressed in the French public project Co-Drive through functions developed by Valeo named Green Light Optimal Speed Advisor (GLOSA). The system advises the optimal speed to pass the next traffic light without stopping. This paper presents results of its performance in different scenarios through simulations and real driving measurements. A scaling is done in an urban area, with different penetration rates in vehicle and infrastructure equipment for vehicular communication. Our simulation results indicate that GLOSA can reduce CO2 emissions, waiting time and travel time, both in experimental conditions and in real traffic conditions.Comment: in 22nd ITS World Congress, Oct 2015, Bordeaux, France. 201
    • …
    corecore