7,989 research outputs found

    Do Convolutional Networks need to be Deep for Text Classification ?

    Get PDF
    We study in this work the importance of depth in convolutional models for text classification, either when character or word inputs are considered. We show on 5 standard text classification and sentiment analysis tasks that deep models indeed give better performances than shallow networks when the text input is represented as a sequence of characters. However, a simple shallow-and-wide network outperforms deep models such as DenseNet with word inputs. Our shallow word model further establishes new state-of-the-art performances on two datasets: Yelp Binary (95.9\%) and Yelp Full (64.9\%)

    Quantum confinement effects in Pb Nanocrystals grown on InAs

    Full text link
    In the recent work of Ref.\cite{Vlaic2017-bs}, it has been shown that Pb nanocrystals grown on the electron accumulation layer at the (110) surface of InAs are in the regime of Coulomb blockade. This enabled the first scanning tunneling spectroscopy study of the superconducting parity effect across the Anderson limit. The nature of the tunnel barrier between the nanocrystals and the substrate has been attributed to a quantum constriction of the electronic wave-function at the interface due to the large Fermi wavelength of the electron accumulation layer in InAs. In this manuscript, we detail and review the arguments leading to this conclusion. Furthermore, we show that, thanks to this highly clean tunnel barrier, this system is remarkably suited for the study of discrete electronic levels induced by quantum confinement effects in the Pb nanocrystals. We identified three distinct regimes of quantum confinement. For the largest nanocrystals, quantum confinement effects appear through the formation of quantum well states regularly organized in energy and in space. For the smallest nanocrystals, only atomic-like electronic levels separated by a large energy scale are observed. Finally, in the intermediate size regime, discrete electronic levels associated to electronic wave-functions with a random spatial structure are observed, as expected from Random Matrix Theory.Comment: Main 12 pages, Supp: 6 page

    Global sensitivity analysis for the boundary control of an open channel

    Full text link
    The goal of this paper is to solve the global sensitivity analysis for a particular control problem. More precisely, the boundary control problem of an open-water channel is considered, where the boundary conditions are defined by the position of a down stream overflow gate and an upper stream underflow gate. The dynamics of the water depth and of the water velocity are described by the Shallow Water equations, taking into account the bottom and friction slopes. Since some physical parameters are unknown, a stabilizing boundary control is first computed for their nominal values, and then a sensitivity anal-ysis is performed to measure the impact of the uncertainty in the parameters on a given to-be-controlled output. The unknown physical parameters are de-scribed by some probability distribution functions. Numerical simulations are performed to measure the first-order and total sensitivity indices

    Sparse classification boundaries

    Get PDF
    Given a training sample of size mm from a dd-dimensional population, we wish to allocate a new observation ZRdZ\in \R^d to this population or to the noise. We suppose that the difference between the distribution of the population and that of the noise is only in a shift, which is a sparse vector. For the Gaussian noise, fixed sample size mm, and the dimension dd that tends to infinity, we obtain the sharp classification boundary and we propose classifiers attaining this boundary. We also give extensions of this result to the case where the sample size mm depends on dd and satisfies the condition (logm)/logdγ(\log m)/\log d \to \gamma, 0γ<10\le \gamma<1, and to the case of non-Gaussian noise satisfying the Cram\'er condition
    corecore