25 research outputs found

    Development of some Models for Assessment the Dynamic Migration Processes of Phosphates in Soil Columns

    Get PDF
    Due to complexity of phosphate (P) migration in soil columns, the problem of theoretical approach of modeling the process is specially difficult. So, numerous semiempirical models based on admission of simplifying assumptions were developed, some of them being apart from the real phenomenon. In this paper are presented the breakthrough curves, the phosphate (P) usage degree in soil, based on a dynamic study, realised in order to determine phosphate sorption rate on the granules of two soil types (cambic chernozem and psamosoil) from Romania. Due to random character of the process, which is influenced by many naturally variable factors, this can be addressed from stochastic point of view. Experimental data regarding phosphate migration in soil column evolution process are represented like curves with sigmoid profile. Based on this observation, Rosin- Rammler and Schuhman sigmoid profile curves, known models and logistic type equations were used as simulation models representing phosphate transport and sorption kinetics for laboratory experiments in columns. Testing the models with the experimental data resulted with the conclusion that the most appropriate models describing the process of phosphate migration in soil columns are Rosin-Rammler and logistic type equation, C = 1-exp(-btn) and C = [1+exp(α+βt)]-1, (C – relative concentration; t – time; b, n, α, β - constant coefficients determined from experimental data by non-linear regression) for which the correlation coefficient is R2 ≥ 0.983 for both types of soil

    Assessing associations between the AURKAHMMR-TPX2-TUBG1 functional module and breast cancer risk in BRCA1/2 mutation carriers

    Get PDF
    While interplay between BRCA1 and AURKA-RHAMM-TPX2-TUBG1 regulates mammary epithelial polarization, common genetic variation in HMMR (gene product RHAMM) may be associated with risk of breast cancer in BRCA1 mutation carriers. Following on these observations, we further assessed the link between the AURKA-HMMR-TPX2-TUBG1 functional module and risk of breast cancer in BRCA1 or BRCA2 mutation carriers. Forty-one single nucleotide polymorphisms (SNPs) were genotyped in 15,252 BRCA1 and 8,211 BRCA2 mutation carriers and subsequently analyzed using a retrospective likelihood appr

    Genome-Wide Association Study in BRCA1 Mutation Carriers Identifies Novel Loci Associated with Breast and Ovarian Cancer Risk

    Get PDF
    BRCA1-associated breast and ovarian cancer risks can be modified by common genetic variants. To identify further cancer risk-modifying loci, we performed a multi-stage GWAS of 11,705 BRCA1 carriers (of whom 5,920 were diagnosed with breast and 1,839 were diagnosed with ovarian cancer), with a further replication in an additional sample of 2,646 BRCA1 carriers. We identified a novel breast cancer risk modifier locus at 1q32 for BRCA1 carriers (rs2290854, P = 2.7×10-8, HR = 1.14, 95% CI: 1.09-1.20). In addition, we identified two novel ovarian cancer risk modifier loci: 17q21.31 (rs17631303, P = 1.4×10-8, HR = 1.27, 95% CI: 1.17-1.38) and 4q32.3 (rs4691139, P = 3.4×10-8, HR = 1.20, 95% CI: 1.17-1.38). The 4q32.3 locus was not associated with ovarian cancer risk in the general population or BRCA2 carriers, suggesting a BRCA1-specific associat

    Research and Science Today No. 2(4)/2012

    Full text link
    corecore