4 research outputs found
CD20-CD19 Bispecific CAR T Cells for the Treatment of B-Cell Malignancies
The treatment of leukemia/lymphoma by chimeric antigen receptor (CAR) redirected T cells with specificity for CD19 induced complete remissions in the majority of patients, with a realistic hope for cure. However, recent follow-up data revealed a substantial risk of relapse through leukemic cells that lack the CAR targeted antigen. In this situation, a bispecific CAR with binding domains for CD19 and CD20 is aimed at recognizing leukemic cells with only one cognate antigen. The anti-CD20-CD19 bispecific CAR induced a full T-cell response upon engagement of CD19 or CD20 on target cells showing a true `` OR'' gate recognition in redirecting T-cell activation. T cells with the anti-CD20-CD19 CAR efficiently killed patients' chronic lymphocytic leukemia cells in vitro. The bispecific CAR T cells cleared pediatric acute lymphocytic leukemia with a mixed CD19+ CD20+/CD20-phenotype from the blood and bone marrow of transplanted mice, while anti-CD20 CAR T cells left CD20-leukemic cells behind without curing the disease. Data indicate the superior anti-leukemic activity in the control of leukemia, implying that the anti-CD20-CD19 bispecific CAR T cells may reduce the risk of relapse through antigen-loss leukemic cells in the long term
GMP-Compliant Manufacturing of TRUCKs: CAR T Cells targeting GD2 and Releasing Inducible IL-18
Chimeric antigen receptor (CAR)-engineered T cells can be highly effective in the treatment of hematological malignancies, but mostly fail in the treatment of solid tumors. Thus, approaches using 4th advanced CAR T cells secreting immunomodulatory cytokines upon CAR signaling, known as TRUCKs (“T cells redirected for universal cytokine-mediated killing”), are currently under investigation. Based on our previous development and validation of automated and closed processing for GMP-compliant manufacturing of CAR T cells, we here present the proof of feasibility for translation of this method to TRUCKs. We generated IL-18-secreting TRUCKs targeting the tumor antigen GD2 using the CliniMACS Prodigy® system using a recently described “all-in-one” lentiviral vector combining constitutive anti-GD2 CAR expression and inducible IL-18. Starting with 0.84 x 108 and 0.91 x 108 T cells after enrichment of CD4+ and CD8+ we reached 68.3-fold and 71.4-fold T cell expansion rates, respectively, in two independent runs. Transduction efficiencies of 77.7% and 55.1% was obtained, and yields of 4.5 x 109 and 3.6 x 109 engineered T cells from the two donors, respectively, within 12 days. Preclinical characterization demonstrated antigen-specific GD2-CAR mediated activation after co-cultivation with GD2-expressing target cells. The functional capacities of the clinical-scale manufactured TRUCKs were similar to TRUCKs generated in laboratory-scale and were not impeded by cryopreservation. IL-18 TRUCKs were activated in an antigen-specific manner by co-cultivation with GD2-expressing target cells indicated by an increased expression of activation markers (e.g. CD25, CD69) on both CD4+ and CD8+ T cells and an enhanced release of pro-inflammatory cytokines and cytolytic mediators (e.g. IL-2, granzyme B, IFN-γ, perforin, TNF-α). Manufactured TRUCKs showed a specific cytotoxicity towards GD2-expressing target cells indicated by lactate dehydrogenase (LDH) release, a decrease of target cell numbers, microscopic detection of cytotoxic clusters and detachment of target cells in real-time impedance measurements (xCELLigence). Following antigen-specific CAR activation of TRUCKs, CAR-triggered release IL-18 was induced, and the cytokine was biologically active, as demonstrated in migration assays revealing specific attraction of monocytes and NK cells by supernatants of TRUCKs co-cultured with GD2-expressing target cells. In conclusion, GMP-compliant manufacturing of TRUCKs is feasible and delivers high quality T cell products