4 research outputs found

    General workflow for students investigating the noncovalent interactions involved in P450<sub>sky</sub>-catalyzed β-hydroxylation of L-(OMe)-Tyr.

    No full text
    <p>This involves computational analysis (Step 1), molecular biology or synthetic chemistry (Step 2), protein purification (Step 3), chemoenzymatic assays (Step 4), and biochemical and biophysical experiments (Step 5). This workflow is a template for realizing an integrated science curriculum, as described and assessed by the Interdisciplinary Learning Consortium [<a href="http://www.plosbiology.org/article/info:doi/10.1371/journal.pbio.2003145#pbio.2003145.ref009" target="_blank">9</a>]. PCP, peptidyl carrier protein.</p

    In a semester of Biochemistry Superlab, students investigated the protein–protein interactions involved in the β-hydroxylation of the natural product skyllamycin.

    No full text
    <p>The skyllamycin peptide is constructed by <i>Streptomyces</i> bacteria via a NRPS involving 11 biosynthetic modules (“M”), composed of catalytic domains such as the A, PCP, and C domains. The <i>in trans</i> cytochrome P450 (P450<sub>sky</sub>, orange) interacts with PCP-bound amino acids on modules 5, 7, and 11 to install β-hydroxyl groups (highlighted in orange on the structure of skyllamycin, right). As a class, we tackled the central question: What is the biochemical basis for the selectivity of the interaction of PCP from module 7 with P450<sub>sky</sub> to install the hydroxyl group on the L-(OMe)-Tyr (incorporated at the boxed position of skyllamycin)? A, adenylation; C, condensation; NRPS, non-ribosomal peptide synthetase; PCP, peptidyl carrier protein.</p
    corecore