3,936 research outputs found

    The vicinal difluoro motif : the synthesis and conformation of erythro- and threo-diastereoisomers of 1,2-difluorodiphenylethanes, 2,3-difluorosuccinic acids and their derivatives

    Get PDF
    Background: It is well established that vicinal fluorines (RCHF-CHFR) prefer to adopt a gauche rather than an anti conformation when placed along aliphatic chains. This has been particularly recognised for 1,2-difluoroethane and extends to 2,3-difluorobutane and longer alkyl chains. It follows in these latter cases that if erythro and threo vicinal difluorinated stereoisomers are compared, they will adopt different overall conformations if the fluorines prefer to be gauche in each case. This concept is explored in this paper with erythro- and threo- diastereoisomers of 2,3-difluorosuccinates. Results: A synthetic route to 2,3-difluorosuccinates has been developed through erythro- and threo- 1,2-difluoro-1,2-diphenylethane which involved the oxidation of the aryl rings to generate the corresponding 2,3- difluorosuccinic acids. Ester and amide derivatives of the erythro- and threo- 2,3-difluorosuccinic acids were then prepared. The solid and solution state conformation of these compounds was assessed by X-ray crystallography and NMR. Ab initio calculations were also carried out to model the conformation of erythro- and threo- 1,2-difluoro-1,2-diphenylethane as these differed from the 2,3-difluorosuccinates. Conclusion: In general the overall chain conformations of the 2,3-difluorosuccinates diastereoisomers were found to be influenced by the fluorine gauche effect. The study highlights the prospects of utilising the vicinal difluorine motif (RCHF-CHFR) as a tool for influencing the conformation of performance organic molecules and particularly tuning conformation by selecting specific diastereoisomers (erythro or threo).Publisher PDFPeer reviewe

    Water Quality Monitoring Project for Demonstration of Canal Remediation Methods: Florida Keys

    Get PDF
    Several important results have been realized from FIU’s regional monitoring project. First is the documentation of elevated nutrient concentrations (DIN, TP and SiO2) in waters close to shore along the Keys, and corresponding responses from the system, such as higher phytoplankton biomass (CHLA), turbidity and light attenuation (Kd), as well as lower oxygenation (DO) and lower salinities of the water column. These changes, associated to human impact, have become more obvious in a new series of ten stations (# 500 to #509) located very close to shore, near canal mouths and sampled since November 2011 (SHORE; Fig 4). These waters are part of the so called Halo Zone, a belt following the shoreline which extends up to 500 meters offshore, and whose water quality characteristics are closely related to those in canals and affected by quick movement of infiltrated runoff and wastewaters (septic tanks), tides and high water tables Many canals do not meet the State’s minimum water quality criteria and are a potential source of nutrients and other contaminants to near shore waters designated as Outstanding Florida Waters. Hence, the Monroe County BOCC has approved moving forward with a series of canal restoration demonstration projects whose results will be used to further define restoration costs and for information in future grant applications to state and federal sources. The Monroe County, the WQPP Steering Committee and the Canal Subcommittee have selected ten (10) canals out of twenty (20) pre-selected sites, for demonstration of restoration technologies (See Summary in Table 4). The main objective of this demonstration is to obtain realistic data and costs for future restoration planning and grant application purposes (AMEC 2012). Those technologies under consideration target two fundamental problems, poor circulation (stagnation) and accumulation of organic matter. Both, poor circulation and accumulation of organic debris, besides run-off and seepage from septic tanks, are major contributors to water quality degradation in the Florida Keys (Kruczynski, 1999), especially to the degradation of canal waters

    Water Quality Monitoring Project for Demonstration of Canal Remediation Methods Florida Keys

    Get PDF
    This report serves to transmit a summary of our efforts in the execution of the Water Quality Monitoring Project for Demonstration of Canal Remediation Methods, as per our US EPA Agreement #X7 00D02412. This report consists of this summary along with corresponding datasets generated during field and laboratory measurements. The period of record of this report is September 2015 to March 2016 and includes data from sampling conducted until February 2016. Data from March 2014 to September 2015 are included for comparison and they were presented in a previous report (Briceno and Serna, 2015)

    Appendix 1 to Report 1

    Get PDF
    Appendix to Water Quality Monitoring Project for Demonstration of Canal Remediation Methods, Florida Keys- Report #1: Canal Water Characterizaton This report serves as a summary of our efforts to date in the execution of the Water Quality Monitoring Project for Demonstration of Canal Remediation Methods, and a channel to deliver the datasets generated during field and laboratory measurements. The period of record for this report is Mar. 2014 – Dec. 2014 and includes data from two sampling events. The objective of the project is to provide data needed to make unbiased, statistically rigorous statements about the status and temporal trends of water quality parameters in the remediated canals. The execution of the project includes two phases: 1) Characterization of canal waters before remediation; and 2) monitoring water quality changes after remediation. We have completed the phase of data collection for the Characterization stage with two measuring/sampling campaigns. Characterization was accomplished using three data-gathering techniques, measuring vertical profiles (casts), continuous 24-hour recording (diel) of physicalchemical properties, and water sampling and analysis for nutrients. We deployed multisensor, water quality monitoring instruments (SeaBird CTD and YSI) to measure physicochemical parameter of at least two profiles throughout the water column at each canal, to generate depth profiles of each parameter. We also deployed pairs of YIS sondes to continuously measure physical-chemical variables of water quality during 24- hours. Finally, we collected and analyzed surface and bottom water samples

    Water Quality Monitoring Project for Demonstration of Canal Remediation Methods Florida Keys- Report #1: Canal Characterization

    Get PDF
    This report serves as a summary of our efforts to date in the execution of the Water Quality Monitoring Project for Demonstration of Canal Remediation Methods, and a channel to deliver the datasets generated during field and laboratory measurements. The period of record for this report is Mar. 2014 – Dec. 2014 and includes data from two sampling events. The objective of the project is to provide data needed to make unbiased, statistically rigorous statements about the status and temporal trends of water quality parameters in the remediated canals. The execution of the project includes two phases: 1) Characterization of canal waters before remediation; and 2) monitoring water quality changes after remediation. We have completed the phase of data collection for the Characterization stage with two measuring/sampling campaigns. Characterization was accomplished using three data-gathering techniques, measuring vertical profiles (casts), continuous 24-hour recording (diel) of physicalchemical properties, and water sampling and analysis for nutrients. We deployed multisensor, water quality monitoring instruments (SeaBird CTD and YSI) to measure physicochemical parameter of at least two profiles throughout the water column at each canal, to generate depth profiles of each parameter. We also deployed pairs of YIS sondes to continuously measure physical-chemical variables of water quality during 24- hours. Finally, we collected and analyzed surface and bottom water samples

    PDZRhoGEF and myosin II localize RhoA activity to the back of polarizing neutrophil-like cells

    Get PDF
    Chemoattractants such as formyl-Met-Leu-Phe (fMLP) induce neutrophils to polarize by triggering divergent pathways that promote formation of a protrusive front and contracting back and sides. RhoA, a Rho GTPase, stimulates assembly of actomyosin contractile complexes at the sides and back. We show here, in differentiated HL60 cells, that PDZRhoGEF (PRG), a guanine nucleotide exchange factor (GEF) for RhoA, mediates RhoA-dependent responses and determines their spatial distribution. As with RNAi knock-down of PRG, a GEF-deleted PRG mutant blocks fMLP-dependent RhoA activation and causes neutrophils to exhibit multiple fronts and long tails. Similarly, inhibition of RhoA, a Rho-dependent protein kinase (ROCK), or myosin II produces the same morphologies. PRG inhibition reduces or mislocalizes monophosphorylated myosin light chains in fMLP-stimulated cells, and myosin II ATPase inhibition reciprocally disrupts normal localization of PRG. We propose a cooperative reinforcing mechanism at the back of cells, in which PRG, RhoA, ROCK, myosin II, and actomyosin spatially cooperate to consolidate attractant-induced contractility and ensure robust cell polarity

    What to Expect: Medical Quality Outcomes and Achievements of a Multidisciplinary Inpatient Musculoskeletal System Rehabilitation

    Get PDF
    The incidence of chronic diseases is rising. Rehabilitation plays a vital role in preventing and minimizing the functional limitations associated with chronic conditions and aging. Routine outcome measures include disease-specific and unspecific general health parameters. This study evaluates indicators for medical quality outcomes from 10,373 patients (61.00 ± 13.65 years, 51.7% women) who have undergone orthopedic rehabilitation for three weeks. Inpatient rehabilitation reduces lifestyle-related risk factors, optimizes organ functioning and improves the well-being in the majority of patients (81.3%; SMD = 0.52 ± 0.38). Improvements of unspecific and indication specific outcome parameters can be observed in a comparable magnitude. However, disease specific and unspecific health factors are not directly related to each other (r = 0.19). Age, gender, ICD-classification and time of rehabilitation have an influence on initial values and on indication-specific medical outcomes but are insignificant with regards to improvements in unspecific medical outcome parameters. Inpatient rehabilitation includes two main pathways of medical practice, which can be clearly distinguished in terms of their therapeutic outcome. There are general health interventions, such as lifestyle modifications, diet and physical exercise, and symptom-specific treatments. So multidisciplinary medical rehabilitation improves general well-being and physical functioning as well as reduces risk factors in the majority of patients
    • …
    corecore