4 research outputs found

    Abstract P-38: Tunable Soft Networks of Wormlike Micelles and Clay Particles

    Get PDF
    Background: Over the past few decades, there has been a great deal of interest in the aqueous self-assembly of surfactant molecules into giant wormlike micelles (WLMs). These cylindrical aggregates undergo reversible breakdown processes and in favorable cases can grow up to few tens of micrometers that is comparable with the length of high molecular weight polymer. The viscoelastic properties of WLMs can be easily modified by different additives like salts or polymers. A new emerging research area consists of tuning the WLM solution properties by inorganic nanoparticles. It suggests, in particular, the use of networks of entangled WLMs as a matrix for producing soft nanocomposites with different kinds of embedded nanoparticles that are promising for controlled release, template synthesis, and oilfield applications. These materials can combine adaptive rheological properties of the WLM matrix and the functionality of nanofiller. Methods: Rheometry and cryo-transmission electron microscopy were combined to investigate the structure and properties of mixed WLMs of zwitterionic oleylamidopropyl dimethyl betaine and anionic sodium dodecyl sulfate surfactants and platelike particles of bentonite clay. Results: This system demonstrates the formation of giant linear long-lived WLMs, which even at extremely low surfactant concentrations reach a sufficient length to entangle with each other and form a temporally persistent network. The stability of these micelles can be due to electrostatic attraction between the headgroups of the anionic and zwitterionic surfactants and favorable volume/length hydrophobic ratio in the surfactant mixture. At increasing surfactant concentration, the long-lived linear micelles transform into fast-breaking branched micelles. Stable viscoelastic suspensions of clay particles in semi-dilute solutions of WLM were elaborated. They represent a novel type of soft nanocomposite with the tunable matrix. Structural studies revealed that the clay is dispersed in a dense network of entangled WLM in the form of 100-nm tactoids. Rheological investigations demonstrated that clay particles can induce an increase of viscosity and relaxation time by up to one order of magnitude. The effect of the clay becomes more pronounced with increasing content of anionic surfactant, when the micelles become branched. This behavior was explained by the stabilization of micelle-nanoclay junction points due to the screening of the repulsion between positively charged fragments of zwitterionic head groups by added anionic surfactant. Conclusion: The pronounced effect of nanoparticles on the viscoelasticity of the network formed by branched WLMs was observed for the first time. The nanoparticles-WLM junctions were confirmed by cryo-TEM data. The elaborated systems are of interest for many industrial applications

    Electrochemical Properties and Structure of Membranes from Perfluorinated Copolymers Modified with Nanodiamonds

    No full text
    In this study, we aimed to design and research proton-conducting membranes based on Aquivion®-type material that had been modified with detonation nanodiamonds (particle size 4–5 nm, 0.25–5.0 wt. %). These nanodiamonds carried different functional groups (H, OH, COOH, F) that provided the hydrophilicity of the diamond surface with positive or negative potential, or that strengthened the hydrophobicity of the diamonds. These variations in diamond properties allowed us to find ways to improve the composite structure so as to achieve better ion conductivity. For this purpose, we prepared three series of membrane films by first casting solutions of perfluorinated Aquivion®-type copolymers with short side chains mixed with diamonds dispersed on solid substrates. Then, we removed the solvent and the membranes were structurally stabilized during thermal treatment and transformed into their final form with –SO3H ionic groups. We found that the diamonds with a hydrogen-saturated surface, with a positive charge in aqueous media, contributed to the increase in proton conductivity of membranes to a greater rate. Meanwhile, a more developed conducting diamond-copolymer interface was formed due to electrostatic attraction to the sulfonic acid groups of the copolymer than in the case of diamonds grafted with negatively charged carboxyls, similar to sulfonic groups of the copolymer. The modification of membranes with fluorinated diamonds led to a 5-fold decrease in the conductivity of the composite, even when only a fraction of diamonds of 1 wt. % were used, which was explained by the disruption in the connectivity of ion channels during the interaction of such diamonds mainly with fluorocarbon chains of the copolymer. We discussed the specifics of the mechanism of conductivity in composites with various diamonds in connection with structural data obtained in neutron scattering experiments on dry membranes, as well as ideas about the formation of cylindrical micelles with central ion channels and shells composed of hydrophobic copolymer chains. Finally, the characteristics of the network of ion channels in the composites were found depending on the type and amount of introduced diamonds, and correlations between the structure and conductivity of the membranes were established

    Improving PFSA Membranes Using Sulfonated Nanodiamonds

    No full text
    Aquivion®-type perfluorosulfonic acid membranes with a polytetrafluoroethylene backbone and short side chains with sulfonic acid groups at the ends have great prospects for operating in hydrogen fuel cells. To improve the conducting properties of membranes, various types of nanofillers can be used. We prepared compositional Aquivion®-type membranes with embedded detonation nanodiamond particles. Nanodiamonds were chemically modified with sulfonic acid groups to increase the entire amount of ionogenic groups involved in the proton conductivity mechanism in compositional membranes. We demonstrated the rise of proton conductivity at 0.5–2 wt.% of sulfonated nanodiamonds in membranes, which was accompanied by good mechanical properties. The basic structural elements, conducting channels in membranes, were not destroyed in the presence of nanodiamonds, as follows from small-angle neutron scattering data. The prepared compositional membranes can be used in hydrogen fuel cells to achieve improved performance

    ATP synthase FOF1 structure, function, and structure-based drug design

    No full text
    ATP synthases are unique rotatory molecular machines that supply biochemical reactions with adenosine triphosphate (ATP)—the universal “currency”, which cells use for synthesis of vital molecules and sustaining life. ATP synthases of F-type (FOF1) are found embedded in bacterial cellular membrane, in thylakoid membranes of chloroplasts, and in mitochondrial inner membranes in eukaryotes. The main functions of ATP synthases are control of the ATP synthesis and transmembrane potential. Although the key subunits of the enzyme remain highly conserved, subunit composition and structural organization of ATP synthases and their assemblies are significantly different. In addition, there are hypotheses that the enzyme might be involved in the formation of the mitochondrial permeability transition pore and play a role in regulation of the cell death processes. Dysfunctions of this enzyme lead to numerous severe disorders with high fatality levels. In our review, we focus on FOF1-structure-based approach towards development of new therapies by using FOF1 structural features inherited by the representatives of this enzyme family from different taxonomy groups. We analyzed and systematized the most relevant information about the structural organization of FOF1 to discuss how this approach might help in the development of new therapies targeting ATP synthases and design tools for cellular bioenergetics control
    corecore