17 research outputs found

    A Computational Realization of a Semi-Lagrangian Method for Solving the Advection Equation

    No full text
    A parallel implementation of a method of the semi-Lagrangian type for the advection equation on a hybrid architecture computation system is discussed. The difference scheme with variable stencil is constructed on the base of an integral equality between the neighboring time levels. The proposed approach allows one to avoid the Courant-Friedrichs-Lewy restriction on the relation between time step and mesh size. The theoretical results are confirmed by numerical experiments. Performance of a sequential algorithm and several parallel implementations with the OpenMP and CUDA technologies in the C language has been studied

    The Development of Forecasting Technique for Cyclic Steam Stimulation Technology Effectiveness in Near-Wellbore Area

    No full text
    The analytical review has shown that the scientific inquiry for effective technologies for high-viscosity oil field development is a critical task of the present-day oil industry. The paper presents a technique for determining the expediency and effectiveness of deploying the near-wellbore cyclic steam stimulation technology for oil recovery enhancement. The method involves the calculation of process parameters of the technology cycle and the comparative analysis of cumulative oil production before the treatment (base case) and after its deployment. Separately, the work focuses on studying the impact of dynamic oil viscosity over the entire temperature range on the technology effectiveness and expediency. The laboratory studies showed dynamic viscosity correlation dependencies for six different oils of the Nozhovskaya group of oil fields (Russian Federation) characterized as viscous and highly viscous. As a case study of the proposed method application, a numerical simulation of the technology deployment was carried out for six oil samples. The calculations determined inexpediency of cyclic steam stimulation for one of the samples since oil well downtime for workover operation prevailed over the time of near-wellbore cooling

    The Development of Forecasting Technique for Cyclic Steam Stimulation Technology Effectiveness in Near-Wellbore Area

    No full text
    The analytical review has shown that the scientific inquiry for effective technologies for high-viscosity oil field development is a critical task of the present-day oil industry. The paper presents a technique for determining the expediency and effectiveness of deploying the near-wellbore cyclic steam stimulation technology for oil recovery enhancement. The method involves the calculation of process parameters of the technology cycle and the comparative analysis of cumulative oil production before the treatment (base case) and after its deployment. Separately, the work focuses on studying the impact of dynamic oil viscosity over the entire temperature range on the technology effectiveness and expediency. The laboratory studies showed dynamic viscosity correlation dependencies for six different oils of the Nozhovskaya group of oil fields (Russian Federation) characterized as viscous and highly viscous. As a case study of the proposed method application, a numerical simulation of the technology deployment was carried out for six oil samples. The calculations determined inexpediency of cyclic steam stimulation for one of the samples since oil well downtime for workover operation prevailed over the time of near-wellbore cooling

    Development of a Methodology and Software Package for Predicting the Formation of Organic Deposits Based on the Results of Laboratory Studies

    No full text
    One of the main problems in the oil industry is the fallout of asphaltene–resin–paraffin deposits (ARPDs) during oil production and transportation. The formation of organic deposits leads to reduced equipment life and reduced production. Currently, there is no single methodology for the numerical simulation of the ARPD dropout process. The aim of our work was to obtain a correlation dependence characterizing the rate of wax growth over time for oils in the Perm Krai, depending on temperature, pressure, and speed conditions. Experimental data for 20 oil samples were obtained using a Wax Flow Loop installation that simulates fluid movement in tubing. The developed correlation was tested in 154 wells. The results of numerical modeling of the paraffin precipitation process made it possible to correct the inter-treatment period of scraping for 109 wells (71%), indicating the high accuracy of the developed approach

    On Portability of IEC 61499 Compliant Structures and Systems

    No full text
    This paper investigates the portability features of three different IEC 61499 standard compliant tools. The study focuses on migrating the basic and composite function block types and system architecture with application networks and device configurations from one tool to another. A converter program is subsequently created using Python programming language to automate the required modification process, thus enabling the files to migrate between the compliant tools. The study takes into consideration NxtStudio, FBDK and 4DIAC software tools. In every tool, similar function blocks and system structures are created. The portability of these created elements is examined between the tools, resulting in a table that numerically evaluates the portability from one tool to another.Peer reviewe

    Integrating 2D and 3D Digital Plant Information Towards Automatic Generation of Digital Twins

    No full text
    Ongoing standardization in Industry 4.0 supports tool vendor neutral representations of Piping and Instrumentation diagrams as well as 3D pipe routing. However, a complete digital plant model requires combining these two representations. 3D pipe routing information is essential for building any accurate ïŹrst-principles process simulation model. Piping and instrumentation diagrams are the primary source for control loops. In order to automatically integrate these information sources to a uniïŹed digital plant model, it is necessary to develop algorithms for identifying corresponding elements such as tanks and pumps from piping and instrumentation diagrams and 3D CAD models. One approach is to raise these two information sources to a common level of abstraction and to match them at this level of abstraction. Graph matching is a potential technique for this purpose. This article focuses on automatic generation of the graphs as a prerequisite to graph matching. Algorithms for this purpose are proposed and validated with a case study. The paper concludes with a discussion of further research needed to reprocess the generated graphs in order to enable effective matching.Peer reviewe

    Roadmap to semi-automatic generation of digital twins for brownfield process plants

    No full text
    Tallennetaan OA-artikkeli, kun julkaistu / KSIndustrial process plants have a lifecycle of several decades, and only some of the most modern plants have digital, machine-readable design information available. For all other plants, the information is often available in PDF and other human-readable formats. Based on this information, a digital twin could be constructed only with considerable human effort. There is a need for a methodology for the semi-automatic generation of digital twins for brownfields with such source information. The objective of this paper is to propose a roadmap towards a methodology for the semi-automatic generation of digital twins for brownfields with such source information as can be expected to be available for brownfields. The purpose of the roadmap is to: conceptualize the methodology, position relevant previous work along this methodology and identify further research challenges to develop the industrial applicability of the methodology. It was discovered that numerous relevant works exist, some of which do not specifically address brownfields. However, there is a lack of research to integrate such research to a methodology for the generation of digital twins.Peer reviewe

    NUMERICAL ANALYSIS OF THE INFLUENCE OF THE AIR EXCHANGE SYSTEM CONFIGURATION ON THE TEMPERATURE REGIME OF LOCAL WORKING AREAS IN A ROOM WITH A GAS INFRARED HEATER

    No full text
    The relevance. The most promising option for an energy-efficient system for ensuring the scheduled thermal regime of local workplaces, which occupy a small area in large workshops, are the so-called «radiant» heating systems, the main part of which are gas infrared heaters. The main role in the formation of the thermal conditions of the local working area is played by the process of mixed convection (the air movement due to its heating by enclosing structures and flows that form the air exchange system). The analysis of the influence of the location of the air exchange system channels on the thermal regime of the local working area using a gas infrared emitter has not been performed so far. The main aim of the research is to analyze the influence of the position of the air exchange system’s openings channels on the temperature fields of local working areas near the equipment model based on the results of mathematical modeling. Objects: heating system using high-intensity gas infrared heater and air exchange system. Methods. Mathematical modeling was carried out within the framework of a two-dimensional model of conjugate heat transfer using the finite element method. The modules «The Heat Transfer in Fluids Interface», «Surface-to-Surface Radiation» and «The Turbulent Flow, k-Δ Interface» of the COMSOL Multiphysics software environment were used for the numerical analysis of heat transfer processes Results. The paper introduces the results of mathematical modeling carried out to determine the influence of the position of the air exchange system’s channels on the temperature fields and the possibility of controlling the process of a scheduled thermal regime formation in local working areas when using a gas infrared heater. The temperatures and velocities fields, as well as the air temperature distribution along the height of the local working area for various options of the air exchange system’s inflow and outflow areas location are presented. Based on the results of the research, the main regularities of the processes of heat and mass transfer under the considered conditions were revealed. The possibility of controlling the processes of thermal regime formation of local working areas by varying the air exchange system channels position was also revealed

    Analysis of the Influence of the Gas Infrared Heater and Equipment Element Relative Positions on Industrial Premises Thermal Conditions

    No full text
    The creation of local heated areas in large-sized premises using systems based on gas infrared heaters has recently become the most rational alternative in terms of energy efficiency. However, the lack of information about the thermal characteristics in such areas limits the effective application of these systems. To determine the main thermal parameters characterizing the scheduled thermal conditions in heated local working areas of industrial premises, experimental and mathematical modeling of heat transfer processes in a closed area with the presence of equipment in it was carried out. The experimental area was equipped with a gas infrared heater and a model of the equipment (a horizontally oriented panel). The system of equations of thermal conductivity, radiant heat transfer, as well as energy and Navier–Stokes was solved by the finite element method. A significant influence of the equipment position on the temperature field and the air movement hydrodynamics in the local working area has been established. The equipment presence in the room intensifies the air movement due to thermal convection and, as a result, a more uniform temperature distribution over the local working area was obtained. Analysis of the obtained results shows the possibility to control the temperature fields’ formation in local working areas during the gas infrared heater operation by varying the position and configuration of the equipment in the room
    corecore