137 research outputs found

    Demystifying molecular techniques in cytopathology practice

    Get PDF
    The last decade was stimulating with the introduction of new molecular techniques to be applied in pathology laboratories. Accordingly, cytology was also benefited with the innovations emerged from this new era. Molecular cytopathology (MCP) can be defined as molecular studies applied on all types of cytological specimens, namely gynaecology cytology, exfoliative non-gyn cytology and fine needle aspirates. The development of a huge amount of new ancillary techniques has paralleled the emergence of clinical cytology as a major diagnostic speciality. Clinical applications of these techniques have been growing in the last decade. The widespread acceptance of liquid-based systems in gynaecological cytology is a paramount episode which re-draws the relation between cells and molecules. The stretched use of approaches, morphology and molecular biology, in HPV-induced lesions settings, e.g., revealed a potential to optimize, in one single brushed sample, diagnosis and research. Cytology samples from serous effusions, pulmonary tree, bladder urine, and aspirations, among others, are now likely to be studied by different molecular techniques for helping in diagnosis, prognosis, or even to assess therapeutic targets. In this review, we highlight the main results already published concerning the application of molecular techniques in different fields of cytopathology and discuss their application

    On one integrable system with a cubic first integral

    Full text link
    Recently one integrable model with a cubic first integral of motion has been studied by Valent using some special coordinate system. We describe the bi-Hamiltonian structures and variables of separation for this system.Comment: LaTeX with AMS fonts, 9 page

    MoSfl1 Is Important for Virulence and Heat Tolerance in Magnaporthe oryzae

    Get PDF
    The formation of appressoria, specialized plant penetration structures of Magnaporthe oryzae, is regulated by the MST11-MST7-PMK1 MAP kinase cascade. One of its downstream transcription factor, MST12, is important for penetration and invasive growth but dispensable for appressorium formation. To identify additional downstream targets that are regulated by Pmk1, in this study we performed phosphorylation assays with a protein microarray composed of 573 M. oryzae transcription factor (TF) genes. Three of the TF genes phosphorylated by Pmk1 in vitro were further analyzed by coimmunoprecipitation assays. One of them, MoSFL1, was found to interact with Pmk1 in vivo. Like other Sfl1 orthologs, the MoSfl1 protein has the HSF-like domain. When expressed in yeast, MoSFL1 functionally complemented the flocculation defects of the sfl1 mutant. In M. oryzae, deletion of MoSFl1 resulted in a significant reduction in virulence on rice and barley seedlings. Consistent with this observation, the Mosfl1 mutant was defective in invasive growth in penetration assays with rice leaf sheaths. In comparison with that of vegetative hyphae, the expression level of MoSFL1 was increased in appressoria and infected rice leaves. The Mosfl1 mutant also had increased sensitivity to elevated temperatures. In CM cultures of the Mosfl1 and pmk1 mutants grown at 30°C, the production of aerial hyphae and melanization were reduced but their growth rate was not altered. When assayed by qRT-PCR, the transcription levels of the MoHSP30 and MoHSP98 genes were reduced 10- and 3-fold, respectively, in the Mosfl1 mutant. SFL1 orthologs are conserved in filamentous ascomycetes but none of them have been functionally characterized in non-Saccharomycetales fungi. MoSfl1 has one putative MAPK docking site and three putative MAPK phosphorylation sites. Therefore, it may be functionally related to Pmk1 in the regulation of invasive growth and stress responses in M. oryzae

    Loss of Function of TET2 Cooperates with Constitutively Active KIT in Murine and Human Models of Mastocytosis

    Get PDF
    Systemic Mastocytosis (SM) is a clonal disease characterized by abnormal accumulation of mast cells in multiple organs. Clinical presentations of the disease vary widely from indolent to aggressive forms, and to the exceedingly rare mast cell leukemia. Current treatment of aggressive SM and mast cell leukemia is unsatisfactory. An imatinib-resistant activating mutation of the receptor tyrosine kinase KIT (KIT D816V) is most frequently present in transformed mast cells and is associated with all clinical forms of the disease. Thus the etiology of the variable clinical aggressiveness of abnormal mast cells in SM is unclear. TET2 appears to be mutated in primary human samples in aggressive types of SM, suggesting a possible role in disease modification. In this report, we demonstrate the cooperation between KIT D816V and loss of function of TET2 in mast cell transformation and demonstrate a more aggressive phenotype in a murine model of SM when both mutations are present in progenitor cells. We exploit these findings to validate a combination treatment strategy targeting the epigenetic deregulation caused by loss of TET2 and the constitutively active KIT receptor for the treatment of patients with aggressive SM

    Recurrent Overexpression of c-IAP2 in EBV-Associated Nasopharyngeal Carcinomas: Critical Role in Resistance to Toll-like Receptor 3-Mediated Apoptosis12

    Get PDF
    The oncogenic process leading to nasopharyngeal carcinoma (NPC) requires the combination of genetic and epigenetic alterations, latent infection by the Epstein-Barr virus and local inflammation. A transcriptome analysis of NPC xenografts identified the gene encoding the cellular inhibitor of apoptosis protein 2 (c-IAP2) among the top five most intensely expressed. Consistently, the very high levels of the c-IAP2 protein were detected in 11 of 13 NPC biopsies. RMT 5265, a structural analog of second mitochondria-derived activator of caspase (SMAC), induced the rapid degradation of c-IAP2 in nasopharyngeal epithelial cells, whether malignant or not, but blocked clonal cell growth in NPC cells only. In short-term experiments, RMT 5265 induced apoptosis in a fraction of NPC cells, and this apoptosis was dramatically enhanced when RMT 5265 was combined with Toll-like receptor 3 (TLR3) stimulation. By contrast, the cooperative effect with tumor necrosis factor α was only marginal. The apoptosis induced by the combination of RMT 5265 and TLR3 stimulation was mediated by caspase-8 and associated with a decrease in the cellular content of the long isoform of FLICE-like inhibitory protein. Similar caspase-8 activation was obtained when siRNA knockdown of c-IAP2 was combined with TLR3 stimulation. In conclusion, c-IAP2 has a specific protective function in NPC cells challenged by TLR3 agonists. This protective function is probably important to make NPC cells tolerant to their own production of small viral RNAs, which are potential agonists of TLR3. Our data will help to design a rational use of IAP inhibitors in NPC patients
    • …
    corecore