2 research outputs found

    Long Distance Electron Transfer at the Metal/Alkanethiol/Ionic Liquid Interface

    No full text
    The rate constants of simple electron transfer (ET) reactions in room temperature ionic liquids (ILs) available now are rather high, typically at the edge of experimental accuracy. To consider ET phenomena in these media in view of theory developed earlier for molecular solvents, it is crucial to provide quantitative comparison of experimental kinetic data for certain reactions. We report this comparison for ferrocene/ferrocenium reaction. The ET distance is fixed by Au surface modification by alkanethiol self-assembled monolayers, which were characterized by in situ scanning tunneling microscopy. The dependence of ln <i>k</i><sub>app</sub> on barrier thickness in the range of ca. 6–20 Å is linear, with a slope typical for the same plots in aqueous media. This result confirms diabatic mode of Fc oxidation at long distance. The data for shorter ET distances point to the adiabatic regime of ET at a bare gold surface, although more detailed computational studies are required to justify this conclusion

    Electrochemical Shell-Isolated Nanoparticle-Enhanced Raman Spectroscopy: Correlating Structural Information and Adsorption Processes of Pyridine at the Au(hkl) Single Crystal/Solution Interface

    No full text
    Electrochemical methods are combined with shell-isolated nanoparticle-enhanced Raman spectroscopy (EC-SHINERS) for a comprehensive study of pyridine adsorption on Au(111), Au(100) and Au(110) single crystal electrode surfaces. The effects of crystallographic orientation, pyridine concentration, and applied potential are elucidated, and the formation of a second pyridine adlayer on Au(111) is observed spectroscopically for the first time. Electrochemical and SHINERS results correlate extremely well throughout this study, and we demonstrate the potential of EC-SHINERS for thorough characterization of processes occurring on single crystal surfaces. Our method is expected to open up many new possibilities in surface science, electrochemistry and catalysis. Analytical figures of merit are discussed
    corecore