6 research outputs found

    NATO Advanced Study Institute on Evolution from Cellular to Social Scales

    No full text
    Evolution is a critical challenge for many areas of science, technology and development of society. The book reviews general evolutionary facts such as origin of life and evolution of the genome and clues to evolution through simple systems. Emerging areas of science such as "systems biology" and "bio-complexity" are founded on the idea that phenomena need to be understood in the context of highly interactive processes operating at different levels and on different scales. This is where physics meets complexity in nature, and where we must begin to learn about complexity if we are to understand it. Similarly, there is an increasingly urgent need to understand and predict the evolutionary behavior of highly interacting man-made systems, in areas such as communications and transport, which permeate the modern world. The same applies to the evolution of human networks such as social, political and financial systems, where technology has tended to vastly increase both the complexity and speed of interaction, which is sometimes effectively instantaneous. The book contains reviews on such diverse areas as evolution experiments with microorganisms, the origin and evolution of viruses, evolutionary dynamics of genes and environment in cancer development, aging as an evolution-facilitating program, evolution of vision and evolution of financial markets

    NATO Advanced Study Institute on Dynamics of Complex Interconnected Biosensor Systems: Networks and Bioprocesses

    No full text
    The book reviews the synergism between various fields of research that are confronted with networks, such as genetic and metabolic networks, social networks, the Internet and ecological systems. In many cases, the interacting networks manifest so-called emergent properties that are not possessed by any of the individual components. This means that the detailed knowledge of the components is insufficient to describe the whole system. Recent work has indicated that networks in nature have so-called scale-free characteristics, and the associated dynamic network modelling shows unexpected results such as an amazing robustness against accidental failures. Modelling the signal transduction networks in bioprocesses as in living cells is a challenging interdisciplinary research area. It is now realized that the many features of molecular interaction networks within a cell are shared to a large degree by the other complex systems mentioned above, such as the Internet, computer chips and society. Thus knowledge gained from the study of complex non-biological systems can be applied to the intricate braided relationships that govern cellular functions

    Development of the methods for simulating the neutron spectrometers and neutron-scattering experiments

    No full text
    Reviewed are the results of simulating the neutron scattering instruments with the program package VITESS upgraded by the routines for treating the polarized neutrons, as developed by the authors. The reported investigations have been carried out at the Frank Laboratory for Neutron Physics at JINR in collaboration with the Juelich research center (Germany). The performance of the resonance and gradient adiabatic spin flippers, the Drabkin resonator, the classical and resonance spin-echo spectrometers, the spin-echo diffractometer for the small-angle neutron scattering, and the spin-echo spectrometer with rotating magnetic fields is successfully modeled. The methods for using the 3D map of the magnetic field from the input file, either mapped experimentally or computed using the finite-elements technique, in the VITESS computer code, are considered in detail. The results of neutron-polarimetry experiments are adequately reproduced by our simulations

    Non-Destructive and Micro-Invasive Techniques for Characterizing the Ancient Roman Mosaic Fragments

    No full text
    The color characteristics, vibration spectra, phase and mineral composition, internal structural organization of several fragments of the ancient Roman mosaics from the Roman Mosaic Museum, Constanta, Romania were studied by non-destructive (Chromatic analysis, Neutron Diffraction, Neutron Tomography) and micro-invasive techniques (Optical Microscopy, X-ray Diffraction, Field Emission Scanning Electron Microscopy–Energy Dispersive X-ray Spectroscopy, Raman Spectroscopy, Wavelength Dispersion X-ray Fluorescence). These investigations were performed in order to characterize the original Roman mosaic fragments. The major and minor phase components of the studied mosaic fragments were determined, the crystal structure of the main phases was analyzed, and their three-dimension spatial arrangement was reconstructed. The similar composition of the major phases of all mosaic fragments can indicate a generic recipe for making mosaic elements, but minor phases were presumably added for coloring of mosaic pieces. Some degradation areas inside the volume of the mosaic fragments were found by means of neutron diffraction and neutron tomography methods. These degradation areas are probably related to the formation of iron hydroxides during chemical interactions of mosaic fragments with the sea and urban polluted atmosphere
    corecore