7 research outputs found

    Translation Control of trpG from Transcripts Originating from the Folate Operon Promoter of Bacillus subtilis Is Influenced by Translation-Mediated Displacement of Bound TRAP, While Translation Control of Transcripts Originating from a Newly Identified trpG Promoter Is Not

    No full text
    Bacillus subtilis trpG encodes a glutamine amidotransferase subunit that participates in the biosynthesis of both tryptophan and folic acid. TRAP inhibits translation of trpG in response to tryptophan by binding to a site that overlaps the trpG Shine-Dalgarno sequence, thereby blocking ribosome binding. Similar mechanisms regulate trpP and ycbK translation. The equilibrium binding constants of tryptophan-activated TRAP for the trpG, ycbK, and trpP transcripts were determined to be 8, 3, and 50 nM, respectively. Despite TRAP having a higher affinity for the trpG transcript, TRAP exhibited the least control of trpG expression. The trpG Shine-Dalgarno sequence overlaps the stop codon of the upstream pabB gene, while six of nine triplet repeats within the TRAP binding site are located upstream of the pabB stop codon. Thus, ribosomes translating the upstream pabB cistron could be capable of reducing TRAP-dependent control of TrpG synthesis by displacing bound TRAP. Expression studies using pabB-trpG′-′lacZ fusions in the presence or absence of an engineered stop codon within pabB suggest that translation-mediated displacement of bound TRAP reduces TRAP-dependent inhibition of TrpG synthesis from transcripts originating from the folate operon promoter (P(pabB)). A new trpG promoter (P(trpG)) was identified in the pabB coding sequence that makes a larger contribution to trpG expression than does P(pabB). We found that TRAP-dependent regulation of trpG expression is more extensive for a transcript originating from P(trpG) and that transcripts originating from P(trpG) are not subject to translation-mediated displacement of bound TRAP

    The trp RNA-Binding Attenuation Protein of Bacillus subtilis Regulates Translation of the Tryptophan Transport Gene trpP (yhaG) by Blocking Ribosome Binding

    No full text
    Expression of the Bacillus subtilis tryptophan biosynthetic genes (trpEDCFBA and pabA [trpG]) is regulated in response to tryptophan by TRAP, the trp RNA-binding attenuation protein. TRAP-mediated regulation of the tryptophan biosynthetic genes includes a transcription attenuation and two distinct translation control mechanisms. TRAP also regulates translation of trpP (yhaG), a single-gene operon that encodes a putative tryptophan transporter. Its translation initiation region contains triplet repeats typical of TRAP-regulated mRNAs. We found that regulation of trpP and pabA is unaltered in a rho mutant strain. Results from filter binding and gel mobility shift assays demonstrated that TRAP binds specifically to a segment of the trpP transcript that includes the untranslated leader and translation initiation region. While the affinities of TRAP for the trpP and pabA transcripts are similar, TRAP-mediated translation control of trpP is much more extensive than for pabA. RNA footprinting revealed that the trpP TRAP binding site consists of nine triplet repeats (five GAG, three UAG, and one AAG) that surround and overlap the trpP Shine-Dalgarno (S-D) sequence and translation start codon. Results from toeprint and RNA-directed cell-free translation experiments indicated that tryptophan-activated TRAP inhibits TrpP synthesis by preventing binding of a 30S ribosomal subunit. Taken together, our results establish that TRAP regulates translation of trpP by blocking ribosome binding. Thus, TRAP coordinately regulates tryptophan synthesis and transport by three distinct mechanisms: attenuation transcription of the trpEDCFBA operon, promoting formation of the trpE S-D blocking hairpin, and blocking ribosome binding to the pabA and trpP transcripts

    NusG-Dependent RNA Polymerase Pausing and Tylosin-Dependent Ribosome Stalling Are Required for Tylosin Resistance by Inducing 23S rRNA Methylation in Bacillus subtilis

    No full text
    Antibiotic resistance is a growing health concern. Resistance mechanisms have evolved that provide bacteria with a growth advantage in their natural habitat such as the soil. We determined that B. subtilis, a Gram-positive soil organism, has a mechanism of resistance to tylosin, a macrolide antibiotic commonly used in the meat industry. Tylosin induces expression of yxjB, which encodes an enzyme that methylates 23S rRNA. YxjB-dependent methylation of 23S rRNA confers tylosin resistance. NusG-dependent RNA polymerase pausing and tylosin-dependent ribosome stalling induce yxjB expression, and hence tylosin resistance, by preventing transcription termination upstream of the yxjB coding sequence and by preventing repression of yxjB translation.Macrolide antibiotics bind to 23S rRNA within the peptide exit tunnel of the ribosome, causing the translating ribosome to stall when an appropriately positioned macrolide arrest motif is encountered in the nascent polypeptide. Tylosin is a macrolide antibiotic produced by Streptomyces fradiae. Resistance to tylosin in S. fradiae is conferred by methylation of 23S rRNA by TlrD and RlmAII. Here, we demonstrate that yxjB encodes RlmAII in Bacillus subtilis and that YxjB-specific methylation of 23S rRNA in the peptide exit tunnel confers tylosin resistance. Growth in the presence of subinhibitory concentrations of tylosin results in increased rRNA methylation and increased resistance. In the absence of tylosin, yxjB expression is repressed by transcription attenuation and translation attenuation mechanisms. Tylosin-dependent induction of yxjB expression relieves these two repression mechanisms. Induction requires tylosin-dependent ribosome stalling at an RYR arrest motif at the C terminus of a leader peptide encoded upstream of yxjB. Furthermore, NusG-dependent RNA polymerase pausing between the leader peptide and yxjB coding sequences is essential for tylosin-dependent induction. Pausing synchronizes the position of RNA polymerase with ribosome position such that the stalled ribosome prevents transcription termination and formation of an RNA structure that sequesters the yxjB ribosome binding site. On the basis of our results, we are renaming yxjB as tlrB
    corecore