12 research outputs found

    Autophagy Controls Acquisition of Aging Features in Macrophages

    Get PDF
    Macrophages provide a bridge linking innate and adaptive immunity. An increased frequency of macrophages and other myeloid cells paired with excessive cytokine production is commonly seen in the aging immune system, known as 'inflamm-aging'. It is presently unclear how healthy macrophages are maintained throughout life and what connects inflammation with myeloid dysfunction during aging. Autophagy, an intracellular degradation mechanism, has known links with aging and lifespan extension. Here, we show for the first time that autophagy regulates the acquisition of major aging features in macrophages. In the absence of the essential autophagy gene Atg7, macrophage populations are increased and key functions such as phagocytosis and nitrite burst are reduced, while the inflammatory cytokine response is significantly increased - a phenotype also observed in aged macrophages. Furthermore, reduced autophagy decreases surface antigen expression and skews macrophage metabolism toward glycolysis. We show that macrophages from aged mice exhibit significantly reduced autophagic flux compared to young mice. These data demonstrate that autophagy plays a critical role in the maintenance of macrophage homeostasis and function, regulating inflammation and metabolism and thereby preventing immunosenescence. Thus, autophagy modulation may prevent excess inflammation and preserve macrophage function during aging, improving immune responses and reducing the morbidity and mortality associated with inflamm-aging. © 2015 S. Karger AG, Basel

    p38 signaling inhibits mTORC1-independent autophagy in senescent human CD8(+) T cells

    Get PDF
    T cell senescence is thought to contribute to immune function decline, but the pathways that mediate senescence in these cells are not clear. Here, we evaluated T cell populations from healthy volunteers and determined that human CD8+ effector memory T cells that reexpress the naive T cell marker CD45RA have many characteristics of cellular senescence, including decreased proliferation, defective mitochondrial function, and elevated levels of both ROS and p38 MAPK. Despite their apparent senescent state, we determined that these cells secreted high levels of both TNF-α and IFN-γ and showed potent cytotoxic activity. We found that the senescent CD45RA-expressing population engaged anaerobic glycolysis to generate energy for effector functions. Furthermore, inhibition of p38 MAPK signaling in senescent CD8+ T cells increased their proliferation, telomerase activity, mitochondrial biogenesis, and fitness; however, the extra energy required for these processes did not arise from increased glucose uptake or oxidative phosphorylation. Instead, p38 MAPK blockade in these senescent cells induced an increase in autophagy through enhanced interactions between p38 interacting protein (p38IP) and autophagy protein 9 (ATG9) in an mTOR-independent manner. Together, our findings describe fundamental metabolic requirements of senescent primary human CD8+ T cells and demonstrate that p38 MAPK blockade reverses senescence via an mTOR-independent pathway

    Autophagy in hematopoiesis and acute myeloid leukemia

    No full text
    Acute myeloid leukemia (AML) develops following oncogenic alterations to hematopoietic stem (HSC) and progenitor cells (HSPCs) in the bone marrow, resulting in dysregulated proliferation of immature myeloid progenitors that interferes with normal hematopoiesis. Understanding the mechanisms of HSPC protection against damage and excessive division, and how these pathways are altered during leukemic progression, is vital for establishing effective therapies. Here, we show that autophagy, a lysosomal degradation pathway, is increased in HSPCs using a novel imaging flow cytometry autophagy assay. Loss of hematopoietic autophagy following deletion of key gene Atg5 resulted in increased HSC proliferation, leading to HSC exhaustion and bone marrow failure. Although erythrocyte and lymphocyte populations were negatively impacted by autophagy loss, myeloid cells showing immature characteristics were expanded. Deletion of Atg5 in an AML model resulted in increased proliferation under metabolic stress, dependent on the glycolytic pathway, and aberrant upstream mTOR signaling. Moreover, modulation of Atg5 altered leukemic response to culture with stromal cells. Finally, primary AML cells displayed multiple markers of decreased autophagy. These data suggest a role for autophagy in preserving HSC function, partially through suppression of HSPC proliferation, and indicate that decreased autophagy may benefit AML cells. We postulate that modulation of autophagy could help maintain stem cell function, for example during transplantation, and aid AML therapy in a setting-specific manner.</p

    Autophagy in hematopoiesis and acute myeloid leukemia

    No full text
    Acute myeloid leukemia (AML) develops following oncogenic alterations to hematopoietic stem (HSC) and progenitor cells (HSPCs) in the bone marrow, resulting in dysregulated proliferation of immature myeloid progenitors that interferes with normal hematopoiesis. Understanding the mechanisms of HSPC protection against damage and excessive division, and how these pathways are altered during leukemic progression, is vital for establishing effective therapies. Here, we show that autophagy, a lysosomal degradation pathway, is increased in HSPCs using a novel imaging flow cytometry autophagy assay. Loss of hematopoietic autophagy following deletion of key gene Atg5 resulted in increased HSC proliferation, leading to HSC exhaustion and bone marrow failure. Although erythrocyte and lymphocyte populations were negatively impacted by autophagy loss, myeloid cells showing immature characteristics were expanded. Deletion of Atg5 in an AML model resulted in increased proliferation under metabolic stress, dependent on the glycolytic pathway, and aberrant upstream mTOR signaling. Moreover, modulation of Atg5 altered leukemic response to culture with stromal cells. Finally, primary AML cells displayed multiple markers of decreased autophagy. These data suggest a role for autophagy in preserving HSC function, partially through suppression of HSPC proliferation, and indicate that decreased autophagy may benefit AML cells. We postulate that modulation of autophagy could help maintain stem cell function, for example during transplantation, and aid AML therapy in a setting-specific manner.This thesis is not currently available in ORA

    Tightrope act: autophagy in stem cell renewal, differentiation, proliferation, and aging

    Get PDF
    Autophagy is a constitutive lysosomal catabolic pathway that degrades damaged organelles and protein aggregates. Stem cells are characterized by self-renewal, pluripotency, and quiescence; their long life span, limited capacity to dilute cellular waste and spent organelles due to quiescence, along with their requirement for remodeling in order to differentiate, all suggest that they require autophagy more than other cell types. Here, we review the current literature on the role of autophagy in embryonic and adult stem cells, including hematopoietic, mesenchymal, and neuronal stem cells, highlighting the diverse and contrasting roles autophagy plays in their biology. Furthermore, we review the few studies on stem cells, lysosomal activity, and autophagy. Novel techniques to detect autophagy in primary cells are required to study autophagy in different stem cell types. These will help to elucidate the importance of autophagy in stem cells during transplantation, a promising therapeutic approach for many diseases

    Autophagy in the pathogenesis of myelodysplastic syndrome and acute myeloid leukemia

    No full text
    Autophagy is a conserved cellular pathway responsible for the sequestration of spent organelles and protein aggregates from the cytoplasm and their delivery into lysosomes for degradation. Autophagy plays an important role in adaptation to starvation, in cell survival, immunity, development and cancer. Recent evidence in mice suggests that autophagic defects in hematopoietic stem cells (HSCs) may be implicated in leukemia. Indeed, mice lacking Atg7 in HSCs develop an atypical myeloproliferation resembling human myelodysplastic syndrome (MDS) progressing to acute myeloid leukemia (AML). Our studies suggest that accumulation of damaged mitochondria and reactive oxygen species result in cell death of the majority of progenitor cells and, possibly, concomitant transformation of some surviving ones. Interestingly, bone marrow cells from MDS patients are characterized by mitochondrial abnormalities and increased cell death. A role for autophagy in the transformation to cancer has been proposed in other cancer types. This review focuses on autophagy in human MDS development and progression to AML within the context of the role of mitochondria, apoptosis and reactive oxygen species (ROS) in its pathogenesis

    Drug metabolism in the horse: a review

    No full text
    corecore