18,555 research outputs found

    Quantum clocks observe classical and quantum time dilation

    Full text link
    At the intersection of quantum theory and relativity lies the possibility of a clock experiencing a superposition of proper times. We consider quantum clocks constructed from the internal degrees of relativistic particles that move through curved spacetime. The probability that one clock reads a given proper time conditioned on another clock reading a different proper time is derived. From this conditional probability distribution, it is shown that when the center-of-mass of these clocks move in localized momentum wave packets they observe classical time dilation. We then illustrate a quantum correction to the time dilation observed by a clock moving in a superposition of localized momentum wave packets that has the potential to be observed in experiment. The Helstrom-Holevo lower bound is used to derive a proper time-energy/mass uncertainty relation.Comment: Updated to match published versio

    Communication between inertial observers with partially correlated reference frames

    Full text link
    In quantum communication protocols the existence of a shared reference frame between two spatially separated parties is normally presumed. However, in many practical situations we are faced with the problem of misaligned reference frames. In this paper, we study communication between two inertial observers who have partial knowledge about the Lorentz transformation that relates their frames of reference. Since every Lorentz transformation can be decomposed into a pure boost followed by a rotation, we begin by analysing the effects on communication when the parties have partial knowledge about the transformation relating their frames, when the transformation is either a rotation or pure boost. This then enables us to investigate how the efficiency of communication is affected due to partially correlated inertial reference frames related by an arbitrary Lorentz transformation. Furthermore, we show how the results of previous studies where reference frames are completely uncorrelated are recovered from our results in appropriate limits.Comment: 9 pages, 3 figures, typos corrected, figures update

    Spacetime structure and vacuum entanglement

    Full text link
    We study the role that both vacuum fluctuations and vacuum entanglement of a scalar field play in identifying the spacetime topology, which is not prescribed from first principles---neither in general relativity or quantum gravity. We analyze how the entanglement and observable correlations acquired between two particle detectors are sensitive to the spatial topology of spacetime. We examine the detector's time evolution to all orders in perturbation theory and then study the phenomenon of vacuum entanglement harvesting in Minkowski spacetime and two flat topologically distinct spacetimes constructed from identifications of the Minkowski space. We show that, for instance, if the spatial topology induces a preferred direction, this direction may be inferred from the dependence of correlations between the two detectors on their orientation. We therefore show that vacuum fluctuations and vacuum entanglement harvesting makes it, in principle, possible to distinguish spacetimes with identical local geometry that differ only in their topology

    Investigation of mixed element hybrid grid-based CFD methods for rotorcraft flow analysis

    Get PDF
    Accurate first-principles flow prediction is essential to the design and development of rotorcraft, and while current numerical analysis tools can, in theory, model the complete flow field, in practice the accuracy of these tools is limited by various inherent numerical deficiencies. An approach that combines the first-principles physical modeling capability of CFD schemes with the vortex preservation capabilities of Lagrangian vortex methods has been developed recently that controls the numerical diffusion of the rotor wake in a grid-based solver by employing a vorticity-velocity, rather than primitive variable, formulation. Coupling strategies, including variable exchange protocols are evaluated using several unstructured, structured, and Cartesian-grid Reynolds Averaged Navier-Stokes (RANS)/Euler CFD solvers. Results obtained with the hybrid grid-based solvers illustrate the capability of this hybrid method to resolve vortex-dominated flow fields with lower cell counts than pure RANS/Euler methods

    Proposal for an Optical Test of the Einstein Equivalence Principle

    Full text link
    The Einstein Equivalence Principle (EEP) underpins all metric theories of gravity. Its key element is the local position invariance of non-gravitational experiments, which entails the gravitational red-shift. Precision measurements of the gravitational red-shift tightly bound violations of the EEP only in the fermionic sector of the Standard Model, however recent developments of satellite optical technologies allow for its investigation in the electromagnetic sector. Proposals exploiting light interferometry traditionally suffer from the first-order Doppler effect, which dominates the weak gravitational signal necessary to test the EEP, making them unfeasible. Here, we propose a novel scheme to test the EEP, which is based on a double large-distance optical interferometric measurement. By manipulating the phase-shifts detected at two locations at different gravitational potentials it is possible to cancel-out the first-order Doppler effect and observe the gravitational red-shift implied by the EEP. We present the detailed analysis of the proposal within the post-Newtonian framework and the simulations of the expected signals obtained by using two realistic satellite orbits. Our proposal to overcome the first-order Doppler effect in optical EEP tests is feasible with current technology.Comment: manuscript improve

    Effect of relativistic acceleration on localized two-mode Gaussian quantum states

    Full text link
    We study how an arbitrary Gaussian state of two localized wave packets, prepared in an inertial frame of reference, is described by a pair of uniformly accelerated observers. We explicitly compute the resulting state for arbitrarily chosen proper accelerations of the observers and independently tuned distance between them. To do so, we introduce a generalized Rindler frame of reference and analytically derive the corresponding state transformation as a Gaussian channel. Our approach provides several new insights into the phenomenon of vacuum entanglement such as the highly non-trivial effect of spatial separation between the observers including sudden death of entanglement. We also calculate the fidelity of the two-mode channel for non-vacuum Gaussian states and obtain bounds on classical and quantum capacities of a single-mode channel. Our framework can be directly applied to any continuous variable quantum information protocol in which the effects of acceleration or gravity cannot be neglected.Comment: 21 pages, 13 figures. A few typos correcte
    • …
    corecore