The Einstein Equivalence Principle (EEP) underpins all metric theories of
gravity. Its key element is the local position invariance of non-gravitational
experiments, which entails the gravitational red-shift. Precision measurements
of the gravitational red-shift tightly bound violations of the EEP only in the
fermionic sector of the Standard Model, however recent developments of
satellite optical technologies allow for its investigation in the
electromagnetic sector. Proposals exploiting light interferometry traditionally
suffer from the first-order Doppler effect, which dominates the weak
gravitational signal necessary to test the EEP, making them unfeasible. Here,
we propose a novel scheme to test the EEP, which is based on a double
large-distance optical interferometric measurement. By manipulating the
phase-shifts detected at two locations at different gravitational potentials it
is possible to cancel-out the first-order Doppler effect and observe the
gravitational red-shift implied by the EEP. We present the detailed analysis of
the proposal within the post-Newtonian framework and the simulations of the
expected signals obtained by using two realistic satellite orbits. Our proposal
to overcome the first-order Doppler effect in optical EEP tests is feasible
with current technology.Comment: manuscript improve